Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;100(9):3912-23.
doi: 10.1002/jps.22567. Epub 2011 Apr 6.

Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo

Affiliations

Diphenhydramine active uptake at the blood-brain barrier and its interaction with oxycodone in vitro and in vivo

Muhammad Waqas Sadiq et al. J Pharm Sci. 2011 Sep.

Abstract

Diphenhydramine (DPHM) and oxycodone are weak bases that are able to form cations. Both drugs show active uptake at the blood-brain barrier (BBB). There is thus a possibility for a pharmacokinetic interaction between them by competition for the same uptake transport system. The experiments of the present study were designed to study the transport of DPHM across the BBB and its interaction with oxycodone in vitro and in vivo. In vitro, the interaction between the drugs was studied using conditionally immortalized rat brain capillary endothelial cells (TR-BBB13 cells). The in vivo relevance of the in vitro findings was studied in rats using brain and blood microdialysis. DPHM was actively transported across the BBB in vitro (TR-BBB13 cells). Oxycodone competitively inhibited DPHM uptake with a K(i) value of 106 μM. DPHM also competitively inhibited oxycodone uptake with a K(i) value of 34.7 μM. In rats, DPHM showed fivefold higher unbound concentration in brain interstitial fluid (ISF) than in blood, confirming a net active uptake. There was no significant interaction between DPHM and oxycodone in vivo. This accords with the results of the in vitro experiments because the unbound plasma concentrations that could be attained in vivo, without causing adverse effects, were far below the K(i) values.

PubMed Disclaimer

Publication types

LinkOut - more resources