Design and synthesis of a new class of membrane-permeable triazaborolopyridinium fluorescent probes
- PMID: 21473622
- PMCID: PMC3244355
- DOI: 10.1021/ja2005175
Design and synthesis of a new class of membrane-permeable triazaborolopyridinium fluorescent probes
Abstract
A new class of fluorescent triazaborolopyridinium compounds was synthesized from hydrazones of 2-hydrazinylpyridine (HPY) and evaluated as potential dyes for live-cell imaging applications. The HPY dyes are small, their absorption/emission properties are tunable through variation of pyridyl or hydrazone substituents, and they offer favorable photophysical characteristics featuring large Stokes shifts and general insensitivity to solvent or pH. The stability, neutral charge, cell membrane permeability, and favorable relative influences on the water solubility of HPY conjugates are complementary to existing fluorescent dyes and offer advantages for the development of receptor-targeted small-molecule probes. This potential was assessed through the development of a new class of cysteine-derived HPY-conjugate imaging agents for the kinesin spindle protein (KSP) that is expressed in the cytoplasm during mitosis and is a promising chemotherapeutic target. Conjugates possessing the neutral HPY or charged Alexa Fluor dyes that function as potent, selective allosteric inhibitors of the KSP motor were compared using biochemical and cell-based phenotypic assays and live-cell imaging. These results demonstrate the effectiveness of the HPY dye moiety as a component of probes for an intracellular protein target and highlight the importance of dye structure in determining the pathway of cell entry and the overall performance of small-molecule conjugates as imaging agents.
© 2011 American Chemical Society
Figures













Similar articles
-
Molecular Tuning of Styryl Dyes Leads to Versatile and Efficient Plasma Membrane Probes for Cell and Tissue Imaging.Bioconjug Chem. 2020 Mar 18;31(3):875-883. doi: 10.1021/acs.bioconjchem.0c00023. Epub 2020 Feb 26. Bioconjug Chem. 2020. PMID: 32053748
-
Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.J Histochem Cytochem. 2003 Dec;51(12):1699-712. doi: 10.1177/002215540305101214. J Histochem Cytochem. 2003. PMID: 14623938
-
Simultaneous visualization of callose deposition and plasma membrane for live-cell imaging in plants.Plant Cell Rep. 2020 Nov;39(11):1517-1523. doi: 10.1007/s00299-020-02580-6. Epub 2020 Aug 27. Plant Cell Rep. 2020. PMID: 32856139
-
Interaction of peptides with biomembranes assessed by potential-sensitive fluorescent probes.J Pept Sci. 2008 Apr;14(4):407-15. doi: 10.1002/psc.1005. J Pept Sci. 2008. PMID: 18189333 Review.
-
Emerging solvatochromic push-pull dyes for monitoring the lipid order of biomembranes in live cells.J Biochem. 2021 Oct 11;170(2):163-174. doi: 10.1093/jb/mvab078. J Biochem. 2021. PMID: 34213537 Review.
Cited by
-
Two broadly conserved families of polyprenyl-phosphate transporters.Nature. 2023 Jan;613(7945):729-734. doi: 10.1038/s41586-022-05587-z. Epub 2022 Nov 30. Nature. 2023. PMID: 36450357 Free PMC article.
-
Monoalkoxy BODIPYs--a fluorophore class for bioimaging.Bioconjug Chem. 2014 Jun 18;25(6):1043-51. doi: 10.1021/bc400575w. Epub 2014 May 14. Bioconjug Chem. 2014. PMID: 24797834 Free PMC article.
-
Clotrimazole as a Cancer Drug: A Short Review.Med Chem (Los Angeles). 2014;4(11):722-724. doi: 10.4172/2161-0444.1000219. Med Chem (Los Angeles). 2014. PMID: 26819835 Free PMC article.
-
A tubulin binding molecule drives differentiation of acute myeloid leukemia cells.iScience. 2022 Jul 19;25(8):104787. doi: 10.1016/j.isci.2022.104787. eCollection 2022 Aug 19. iScience. 2022. PMID: 35992086 Free PMC article.
-
Redox-sensitive reversible self-assembly of amino acid-naphthalene diimide conjugates.Interface Focus. 2017 Dec 6;7(6):20160099. doi: 10.1098/rsfs.2016.0099. Epub 2017 Oct 20. Interface Focus. 2017. PMID: 29147549 Free PMC article.
References
-
- Zhang J, Campbell RE, Ting AY, Tsien RY. Nat Rev Mol Cell Bio. 2002;3:906–918. - PubMed
- Lavis LD, Raines RT. ACS Chem Biol. 2008;3(3):142–155. - PMC - PubMed
- Walter NG, Huang CY, Manzo AJ, Sobhy MA. Nature Methods. 2008;5(6):475–489. - PMC - PubMed
- Tinnefeld P, Sauer M. Angew Chem Int Ed. 2005;44:2642–2671. - PubMed
- Goncalves MST. Chem Rev. 2009;109:190–212. - PubMed
- Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. Chem Rev. 2010;110:2620–2640. - PMC - PubMed
-
- Loudet A, Burgess K. Chem Rev. 2007;107(11):4891–4932. - PubMed
-
- Kim E, Koh M, Ryu J, Park SB. J Am Chem Soc. 2008;130:12206–12207. - PubMed
- Abet V, Nuñez A, Mendicuti F, Burgos C, Alvarez-Builla J. J Org Chem. 2008;73:8800–8807. - PubMed
- Ozhalici-Unal H, Pow CL, Marks SA, Jesper LD, Silva GL, Shank NI, Jones EW, Burnette JM, Berget PB, Armitage BA. J Am Chem Soc. 2008;130(38):12620–12621. - PMC - PubMed
-
- Alexander MD, et al. ChemBioChem. 2006;7:409–416. - PubMed
-
- Ramesh C, Bryant B, Nayak T, Revankar CM, Anderson T, Carlson KE, Katzenellenbogen JA, Sklar LA, Norenberg JP, Prossnitz ER, Arterburn JB. J Am Chem Soc. 2006;128:14476–14477. - PMC - PubMed
- Nayak TK, Hathaway HJ, Ramesh C, Arterburn JB, Dai D, Sklar LA, Norenberg JP, Prossnitz ER. J Nuclear Med. 2008;49(6):978–986. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources