Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced DeltapH
- PMID: 21474447
- PMCID: PMC3103371
- DOI: 10.1074/jbc.M111.237255
Restoration of rapidly reversible photoprotective energy dissipation in the absence of PsbS protein by enhanced DeltapH
Abstract
Variations in the light environment require higher plants to regulate the light harvesting process. Under high light a mechanism known as non-photochemical quenching (NPQ) is triggered to dissipate excess absorbed light energy within the photosystem II (PSII) antenna as heat, preventing photodamage to the reaction center. The major component of NPQ, known as qE, is rapidly reversible in the dark and dependent upon the transmembrane proton gradient (ΔpH), formed as a result of photosynthetic electron transport. Using diaminodurene and phenazine metasulfate, mediators of cyclic electron flow around photosystem I, to enhance ΔpH, it is demonstrated that rapidly reversible qE-type quenching can be observed in intact chloroplasts from Arabidopsis plants lacking the PsbS protein, previously believed to be indispensible for the process. The qE in chloroplasts lacking PsbS significantly quenched the level of fluorescence when all PSII reaction centers were in the open state (F(o) state), protected PSII reaction centers from photoinhibition, was modulated by zeaxanthin and was accompanied by the qE-typical absorption spectral changes, known as ΔA(535). Titrations of the ΔpH dependence of qE in the absence of PsbS reveal that this protein affects the cooperativity and sensitivity of the photoprotective process to protons. The roles of PsbS and zeaxanthin are discussed in light of their involvement in the control of the proton-antenna association constant, pK, via regulation of the interconnected phenomena of PSII antenna reorganization/aggregation and hydrophobicity.
Figures
References
-
- Horton P., Ruban A. V., Walters R. G. (1996) Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684 - PubMed
-
- Holt N. E., Fleming G. R., Niyogi K. K. (2004) Biochemistry 43, 8281–8289 - PubMed
-
- Nelson N., Ben-Shem A. (2004) Nat. Rev. Mol. Cell Biol. 5, 971–982 - PubMed
-
- Kramer D. M., Avenson T. J., Edwards G. E. (2004) Trends Plant Sci. 9, 349–357 - PubMed
-
- Arnon D. I., Allen M. B., Whatley F. R. (1954) Nature 174, 394–396 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
