Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;27(8):1221-32.
doi: 10.1007/s00381-011-1430-0. Epub 2011 Apr 8.

Does drainage hole size influence adhesion on ventricular catheters?

Affiliations

Does drainage hole size influence adhesion on ventricular catheters?

Carolyn A Harris et al. Childs Nerv Syst. 2011 Aug.

Abstract

Purpose: Ventricular catheter drainage holes of shunt systems used to treat hydrocephalus obstruct with tissue commonly comprising monocytes/macrophages, astrocytes, and giant cells. Despite high rates of obstruction, very few studies have manipulated drainage hole orientation, number, position, or diameter. By altering the hole diameter but maintaining a constant hole surface area, we manipulated shear stress through the holes, which we hypothesized would change the degree of macrophage and astrocyte attachment.

Methods: First, a hole fabrication method was chosen from two fabrication techniques including punched holes in catheter tubing and constructed holes using nanofabrication techniques.

Results: Punched holes were chosen to vary hole size from 282 to 975 μm because (1) samples were geometrically similar to commercially available ventricular catheters without significant microscopic differences in roughness values and (2) total macrophage and astrocyte adhesion on the punched holes was not significantly different from adhesion on the commercially available catheters. Overall adhesion from least to most adherent appeared to follow 975 < 754 ≈ 500 < 282-μm hole diameter for macrophages and 975 < 500 < 754 < 282 for astrocytes with an obvious dependency on catheter orientation with respect to the horizontal; a dependency to the proximity of the hole to the catheter tip was not observed.

Conclusion: This study suggests that macrophage and astrocyte adhesion generally decreases with increasing hole diameter under flow conditions and underscores the necessity for future work to examine how hole diameter impacts inflammatory-based shunt obstruction.

PubMed Disclaimer

References

    1. Acta Cytol. 1985 May-Jun;29(3):391-6 - PubMed
    1. Ann Biomed Eng. 2008 Apr;36(4):604-21 - PubMed
    1. J Biomed Mater Res. 1998 Aug;41(2):171-84 - PubMed
    1. Biomed Microdevices. 2005 Dec;7(4):281-93 - PubMed
    1. Neurosurgery. 2006 Oct;59(4 Suppl 2):ONS403-12; discussion ONS412 - PubMed

LinkOut - more resources