An axonal strain injury criterion for traumatic brain injury
- PMID: 21476072
- DOI: 10.1007/s10237-011-0307-1
An axonal strain injury criterion for traumatic brain injury
Abstract
Computational models are often used as tools to study traumatic brain injury. The fidelity of such models depends on the incorporation of an appropriate level of structural detail, the accurate representation of the material behavior, and the use of an appropriate measure of injury. In this study, an axonal strain injury criterion is used to estimate the probability of diffuse axonal injury (DAI), which accounts for a large percentage of deaths due to brain trauma and is characterized by damage to neural axons in the deep white matter regions of the brain. We present an analytical and computational model that treats the white matter as an anisotropic, hyperelastic material. Diffusion tensor imaging is used to incorporate the structural orientation of the neural axons into the model. It is shown that the degree of injury that is predicted in a computational model of DAI is highly dependent on the incorporation of the axonal orientation information and the inclusion of anisotropy into the constitutive model for white matter.
Similar articles
-
A multiscale computational approach to estimating axonal damage under inertial loading of the head.J Neurotrauma. 2013 Jan 15;30(2):102-18. doi: 10.1089/neu.2012.2418. J Neurotrauma. 2013. PMID: 22992118
-
A tissue-level anisotropic criterion for brain injury based on microstructural axonal deformation.J Mech Behav Biomed Mater. 2012 Jan;5(1):41-52. doi: 10.1016/j.jmbbm.2011.09.012. Epub 2011 Oct 1. J Mech Behav Biomed Mater. 2012. PMID: 22100078
-
Micromechanics of diffuse axonal injury: influence of axonal orientation and anisotropy.Biomech Model Mechanobiol. 2011 Jun;10(3):413-22. doi: 10.1007/s10237-010-0243-5. Epub 2010 Jul 16. Biomech Model Mechanobiol. 2011. PMID: 20635116
-
Experimental models of traumatic axonal injury.J Clin Neurosci. 2010 Feb;17(2):157-62. doi: 10.1016/j.jocn.2009.07.099. Epub 2009 Dec 29. J Clin Neurosci. 2010. PMID: 20042337 Review.
-
The importance of structural anisotropy in computational models of traumatic brain injury.Front Neurol. 2015 Feb 19;6:28. doi: 10.3389/fneur.2015.00028. eCollection 2015. Front Neurol. 2015. PMID: 25745414 Free PMC article. Review.
Cited by
-
Torsional behavior of axonal microtubule bundles.Biophys J. 2015 Jul 21;109(2):231-9. doi: 10.1016/j.bpj.2015.06.029. Biophys J. 2015. PMID: 26200859 Free PMC article.
-
Experimental subarachnoid haemorrhage results in multifocal axonal injury.Brain. 2015 Sep;138(Pt 9):2608-18. doi: 10.1093/brain/awv180. Epub 2015 Jun 26. Brain. 2015. PMID: 26115676 Free PMC article.
-
Finite Element Analysis of Impact for Helmeted and Non-helmeted Head.J Med Biol Eng. 2018;38(4):587-595. doi: 10.1007/s40846-017-0324-3. Epub 2017 Sep 25. J Med Biol Eng. 2018. PMID: 30100828 Free PMC article.
-
3-D Measurements of Acceleration-Induced Brain Deformation via Harmonic Phase Analysis and Finite-Element Models.IEEE Trans Biomed Eng. 2019 May;66(5):1456-1467. doi: 10.1109/TBME.2018.2874591. Epub 2018 Oct 8. IEEE Trans Biomed Eng. 2019. PMID: 30296208 Free PMC article.
-
The Influence of Shear Anisotropy in mTBI: A White Matter Constitutive Model.Ann Biomed Eng. 2019 Sep;47(9):1960-1970. doi: 10.1007/s10439-019-02321-1. Epub 2019 Jul 15. Ann Biomed Eng. 2019. PMID: 31309368 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources