Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;31(10):1543-60.
doi: 10.1111/j.1539-6924.2011.01610.x. Epub 2011 Apr 7.

An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica

Affiliations

An exposure-response threshold for lung diseases and lung cancer caused by crystalline silica

Louis Anthony Tony Cox Jr. Risk Anal. 2011 Oct.

Abstract

Whether crystalline silica (CS) exposure increases risk of lung cancer in humans without silicosis, and, if so, whether the exposure-response relation has a threshold, have been much debated. Epidemiological evidence is ambiguous and conflicting. Experimental data show that high levels of CS cause lung cancer in rats, although not in other species, including mice, guinea pigs, or hamsters; but the relevance of such animal data to humans has been uncertain. This article applies recent insights into the toxicology of lung diseases caused by poorly soluble particles (PSPs), and by CS in particular, to model the exposure-response relation between CS and risk of lung pathologies such as chronic inflammation, silicosis, fibrosis, and lung cancer. An inflammatory mode of action is described, having substantial empirical support, in which exposure increases alveolar macrophages and neutrophils in the alveolar epithelium, leading to increased reactive oxygen species (ROS) and nitrogen species (RNS), pro-inflammatory mediators such as TNF-alpha, and eventual damage to lung tissue and epithelial hyperplasia, resulting in fibrosis and increased lung cancer risk among silicotics. This mode of action involves several positive feedback loops. Exposures that increase the gain factors around such loops can create a disease state with elevated levels of ROS, TNF-alpha, TGF-beta, alveolar macrophages, and neutrophils. This mechanism implies a "tipping point" threshold for the exposure-response relation. Applying this new model to epidemiological data, we conclude that current permissible exposure levels, on the order of 0.1 mg/m³, are probably below the threshold for triggering lung diseases in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources