The impact of next-generation sequencing on genomics
- PMID: 21477781
- PMCID: PMC3076108
- DOI: 10.1016/j.jgg.2011.02.003
The impact of next-generation sequencing on genomics
Abstract
This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.
Copyright © 2011. Published by Elsevier Ltd.
References
-
- Ahn SM, Kim TH, Lee S, Kim D, Ghang H, Kim DS, Kim BC, Kim SY, Kim WY, Kim C, Park D, Lee YS, Kim S, Reja R, Jho S, Kim CG, Cha JY, Kim KH, Lee B, Bhak J, Kim SJ. The first Korean genome sequence and analysis: full genome sequencing for a socio-ethnic group. Genome Res. 2009;19:1622–1629. - PMC - PubMed
-
- Ansorge WJ. Next-generation DNA sequencing techniques. Nat. Biotechnol. 2009;25:195–203. - PubMed
-
- Bau S, Schracke N, Kranzle M, Wu H, Stahler PF, Hoheisel JD, Beier M, Summerer D. Targeted next-generation sequencing by specific capture of multiple genomic loci using low-volume microfluidic DNA arrays. Anal. Bioanal. Chem. 2009;393:171–175. - PubMed
-
- Bilguvar K, Ozturk AK, Louvi A, Kwan KY, Choi M, Tatli B, Yalnizoglu D, Tuysuz B, Caglayan AO, Gokben S, Kaymakcalan H, Barak T, Bakircioglu M, Yasuno K, Ho W, Sanders S, Zhu Y, Yilmaz S, Dincer A, Johnson MH, Bronen RA, Kocer N, Per H, Mane S, Pamir MN, Yalcinkaya C, Kumandas S, Topcu M, Ozmen M, Sestan N, Lifton RP, State MW, Gunel M. Whole-exome sequencing identifies recessive WDR62 mutations in severe brain malformations. Nature. 2010;467:207–210. - PMC - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials