A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection
- PMID: 21479332
- PMCID: PMC3998765
- DOI: 10.1039/c0lc00707b
A single-layer, planar, optofluidic Mach-Zehnder interferometer for label-free detection
Abstract
We have developed a planar, optofluidic Mach-Zehnder interferometer for the label-free detection of liquid samples. In contrast to most on-chip interferometers which require complex fabrication, our design was realized via a simple, single-layer soft lithography fabrication process. In addition, a single-wavelength laser source and a silicon photodetector were the only optical equipment used for data collection. The device was calibrated using published data for the refractive index of calcium chloride (CaCl(2)) in solution, and the biosensing capabilities of the device were tested by detecting bovine serum albumin (BSA). Our design enables a refractometer with a low limit of detection (1.24 × 10(-4) refractive index units (RIU)), low variability (1 × 10(-4) RIU), and high sensitivity (927.88 oscillations per RIU). This performance is comparable to state-of-the-art optofluidic refractometers that involve complex fabrication processes and/or expensive, bulky optics. The advantages of our device (i.e. simple fabrication process, straightforward optical equipment, low cost, and high detection sensitivity) make it a promising candidate for future mass-producible, inexpensive, highly sensitive, label-free optical detection systems.
© The Royal Society of Chemistry 2011
Figures







Similar articles
-
Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor.Opt Express. 2017 Jul 24;25(15):17105-17113. doi: 10.1364/OE.25.017105. Opt Express. 2017. PMID: 28789206
-
Slow light Mach-Zehnder interferometer as label-free biosensor with scalable sensitivity.Opt Lett. 2016 Feb 15;41(4):753-6. doi: 10.1364/OL.41.000753. Opt Lett. 2016. PMID: 26872180
-
Plasmonic Mach-Zehnder interferometer for ultrasensitive on-chip biosensing.ACS Nano. 2011 Dec 27;5(12):9836-44. doi: 10.1021/nn2034204. Epub 2011 Nov 18. ACS Nano. 2011. PMID: 22067195
-
Silicon Photonic Biosensors Using Label-Free Detection.Sensors (Basel). 2018 Oct 18;18(10):3519. doi: 10.3390/s18103519. Sensors (Basel). 2018. PMID: 30340405 Free PMC article. Review.
-
Development of phase detection schemes based on surface plasmon resonance using interferometry.Sensors (Basel). 2014 Aug 28;14(9):15914-38. doi: 10.3390/s140915914. Sensors (Basel). 2014. PMID: 25171117 Free PMC article. Review.
Cited by
-
Practical and Compact Guided Mode Resonance Sensing System for Highly Sensitive Real-Time Detection.Sensors (Basel). 2025 Jun 27;25(13):4019. doi: 10.3390/s25134019. Sensors (Basel). 2025. PMID: 40648274 Free PMC article.
-
A single-layer, planar, optofluidic switch powered by acoustically driven, oscillating microbubbles.Appl Phys Lett. 2012 Oct 1;101(14):141101. doi: 10.1063/1.4742864. Appl Phys Lett. 2012. PMID: 23112348 Free PMC article.
-
A droplet-based, optofluidic device for high-throughput, quantitative bioanalysis.Anal Chem. 2012 Dec 18;84(24):10745-9. doi: 10.1021/ac302623z. Epub 2012 Nov 27. Anal Chem. 2012. PMID: 23140515 Free PMC article.
-
Liquid Core ARROW Waveguides: A Promising Photonic Structure for Integrated Optofluidic Microsensors.Micromachines (Basel). 2016 Mar 11;7(3):47. doi: 10.3390/mi7030047. Micromachines (Basel). 2016. PMID: 30407419 Free PMC article. Review.
-
Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.Sci Rep. 2016 Feb 29;6:22294. doi: 10.1038/srep22294. Sci Rep. 2016. PMID: 26922872 Free PMC article.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources