Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Dec 5;216(3):761-72.
doi: 10.1016/0022-2836(90)90397-5.

Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility

Affiliations

Inhibition of sliding movement of F-actin by crosslinking emphasizes the role of actin structure in the mechanism of motility

E Prochniewicz et al. J Mol Biol. .

Abstract

The effects of crosslinking of monomeric and polymeric actin with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), disuccinimidyl suberate (DSS) and glutaraldehyde on the interaction with heavy meromyosin (HMM) in solution and on the sliding movement on glass-attached HMM were examined. The Vmax values of actin-activated HMM ATPase decreased in the following order: intact actin = EDC F-actin greater than DSS actin greater than glutaraldehyde F-actin = glutaraldehyde G-actin greater than EDC G-actin. The affinity of actin for HMM in the presence of ATP decreased in the following order: DSS actin greater than glutaraldehyde F-actin = glutaraldehyde G-actin greater than intact actin greater than EDC F-actin greater than EDC G-actin. However, sliding movement was inhibited only in the case of glutaraldehyde-crosslinked F and G-actin and EDC-crosslinked G-actin. Interestingly, after copolymerization of "non-motile" glutaraldehyde or EDC-crosslinked monomers with "motile" monomers of intact actin sliding of the copolymers was observed and its rate was independent of the type of crosslinked monomer, i.e. of the manner of their interaction with HMM. These data strongly indicate that inhibition of the sliding of actin by crosslinking cannot be explained entirely by changes in the Vmax value or affinity for myosin heads. We conclude that movement is generated by interaction of myosin with segments of F-actin containing a number of intact monomers, and the mechanism of inhibition involves an effect of the crosslinkers on the structure of F-actin itself.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources