Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jan;18(1):1-7.
doi: 10.1111/j.1369-1600.2010.00298.x. Epub 2011 Apr 11.

Pharmacokinetic modeling of subcutaneous heroin and its metabolites in blood and brain of mice

Affiliations

Pharmacokinetic modeling of subcutaneous heroin and its metabolites in blood and brain of mice

Fernando Boix et al. Addict Biol. 2013 Jan.

Abstract

High blood-brain permeability and effective delivery of morphine to the brain have been considered as explanations for the high potency of heroin. Results from Andersen et al. indicate that 6-monoacetylmorphine (6-MAM), and not morphine, is the active metabolite responsible for the acute effects observed for heroin. Here, we use pharmacokinetic modeling on data from the aforementioned study to calculate parameters of the distribution of heroin, 6-MAM and morphine in blood and brain tissue after subcutaneous heroin administration in mice. The estimated pharmacokinetic parameters imply that the very low heroin and the high 6-MAM levels observed both in blood and brain in the original experiment are likely to be caused by a very high metabolic rate of heroin in blood. The estimated metabolic rate of heroin in brain was much lower and cannot account for the low heroin and high 6-MAM levels in the brain, which would primarily reflect the concentrations of these compounds in blood. The very different metabolic rates for heroin in blood and brain calculated by the model were confirmed by in vitro experiments. These results show that heroin's fast metabolism in blood renders high concentrations of 6-MAM which, due to its relatively good blood-brain permeability, results in high levels of this metabolite in the brain. Thus, it is the high blood metabolism rate of heroin and the blood-brain permeability to 6-MAM, and not to heroin, which could account for the highly efficient delivery of active metabolites to the brain after heroin administration.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources