Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Nov 20;29(46):10518-26.
doi: 10.1021/bi00498a014.

Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 2. Evidence for a kinetic and thermodynamic modulation of F0F1-ATPase by the activity of the respiratory chain

Affiliations

Kinetics of oxidative phosphorylation in Paracoccus denitrificans. 2. Evidence for a kinetic and thermodynamic modulation of F0F1-ATPase by the activity of the respiratory chain

J A Pérez et al. Biochemistry. .

Abstract

(1) The affinity of the F0F1-ATPase from Paracoccus denitrificans for ATP during NADH-driven oxidative phosphorylation has been analyzed under different conditions by examining the type and extent of product inhibition. (2) A limited collapse of the protonmotive force (delta p) due to partial uncoupling does not increase the affinity for ATP at the active site(s) of the enzyme; instead, a partial noncompetitive inhibition becomes apparent, compatible with the binding of ATP to a noncatalytic site (or sites) with high affinity. (3) In contrast, partial inhibition of the electron-transport chain increases the extent of pure competitive product inhibition and, therefore, the affinity for ATP at the active site(s). (4) The results are interpreted as indicative of a modulation of the rate of ATP release from the active site(s) of the F0F1-ATPase which is controlled by the activity of the electron-transport chain and not by delta p.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms