Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration
- PMID: 21486944
- PMCID: PMC3078819
- DOI: 10.1242/jcs.080580
Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration
Abstract
The mammalian olfactory epithelium (OE) has a unique stem cell or progenitor niche, which is responsible for the constant peripheral neurogenesis throughout the lifespan of the animal. However, neither the signals that regulate the behavior of these cells nor the lineage properties of the OE stem cells are well understood. Multiple Wnt signaling components exhibit dynamic expression patterns in the developing OE. We generated Wnt signaling reporter TOPeGFP transgenic mice and found TOPeGFP activation predominantly in proliferating Sox2(+) OE basal cells during early postnatal development. FACS-isolated TOPeGFP(+) OE basal cells are required, but are not sufficient, for formation of spheres. Wnt3a significantly promotes the proliferation of the Sox2(+) OE sphere cells. Wnt-stimulated OE sphere cells maintain their multipotency and can differentiate into most types of neuronal and non-neuronal epithelial cells. Also, Wnt activators shift the production of differentiated cells toward olfactory sensory neurons. Moreover, TOPeGFP(+) cells are robustly increased in the adult OE after injury. In vivo administration of Wnt modulators significantly alters the regeneration potential. This study demonstrates the role of the canonical Wnt signaling pathway in the regulation of OE stem cells or progenitors during development and regeneration.
Figures








Similar articles
-
Canonical Notch Signaling Directs the Fate of Differentiating Neurocompetent Progenitors in the Mammalian Olfactory Epithelium.J Neurosci. 2018 May 23;38(21):5022-5037. doi: 10.1523/JNEUROSCI.0484-17.2018. Epub 2018 May 8. J Neurosci. 2018. PMID: 29739871 Free PMC article.
-
Purinergic signalling selectively modulates maintenance but not repair neurogenesis in the zebrafish olfactory epithelium.FEBS J. 2020 Jul;287(13):2699-2722. doi: 10.1111/febs.15170. Epub 2019 Dec 29. FEBS J. 2020. PMID: 31821713
-
Wnt3a promotes hippocampal neurogenesis by shortening cell cycle duration of neural progenitor cells.Cell Mol Neurobiol. 2010 Oct;30(7):1049-58. doi: 10.1007/s10571-010-9536-6. Epub 2010 Jun 30. Cell Mol Neurobiol. 2010. PMID: 20589426 Free PMC article.
-
Identification and molecular regulation of neural stem cells in the olfactory epithelium.Exp Cell Res. 2005 Jun 10;306(2):309-16. doi: 10.1016/j.yexcr.2005.03.027. Epub 2005 Apr 21. Exp Cell Res. 2005. PMID: 15925585 Review.
-
The neuronal stem cell of the olfactory epithelium.J Neurobiol. 1998 Aug;36(2):190-205. doi: 10.1002/(sici)1097-4695(199808)36:2<190::aid-neu7>3.0.co;2-x. J Neurobiol. 1998. PMID: 9712304 Review.
Cited by
-
Cell Signaling Pathway Reporters in Adult Hematopoietic Stem Cells.Cells. 2020 Oct 9;9(10):2264. doi: 10.3390/cells9102264. Cells. 2020. PMID: 33050292 Free PMC article. Review.
-
Possible Contribution of Wnt-Responsive Chondroprogenitors to the Postnatal Murine Growth Plate.J Bone Miner Res. 2019 May;34(5):964-974. doi: 10.1002/jbmr.3658. Epub 2019 Jan 28. J Bone Miner Res. 2019. PMID: 30602070 Free PMC article.
-
Olig2 regulates terminal differentiation and maturation of peripheral olfactory sensory neurons.Cell Mol Life Sci. 2020 Sep;77(18):3597-3609. doi: 10.1007/s00018-019-03385-x. Epub 2019 Nov 22. Cell Mol Life Sci. 2020. PMID: 31758234 Free PMC article.
-
Transcriptional and Epigenetic Control of Mammalian Olfactory Epithelium Development.Mol Neurobiol. 2018 Nov;55(11):8306-8327. doi: 10.1007/s12035-018-0987-y. Epub 2018 Mar 12. Mol Neurobiol. 2018. PMID: 29532253 Review.
-
Neuroprotective and regenerative roles of intranasal Wnt-3a administration after focal ischemic stroke in mice.J Cereb Blood Flow Metab. 2018 Mar;38(3):404-421. doi: 10.1177/0271678X17702669. Epub 2017 Apr 21. J Cereb Blood Flow Metab. 2018. PMID: 28430000 Free PMC article.
References
-
- Bandyopadhyay U., Biswas K., Banerjee R. K. (2002). Extrathyroidal actions of antithyroid thionamides. Toxicol. Lett. 128, 117-127 - PubMed
-
- Barraud P., He X., Zhao C., Ibanez C., Raha-Chowdhury R., Caldwell M. A., Franklin R. J. (2007). Contrasting effects of basic fibroblast growth factor and epidermal growth factor on mouse neonatal olfactory mucosa cells. Eur. J. Neurosci. 26, 3345-3357 - PubMed
-
- Bergman U., Ostergren A., Gustafson A. L., Brittebo B. (2002). Differential effects of olfactory toxicants on olfactory regeneration. Arch. Toxicol. 76, 104-112 - PubMed
-
- Bergstrom U., Giovanetti A., Piras E., Brittebo E. B. (2003). Methimazole-induced damage in the olfactory mucosa: effects on ultrastructure and glutathione levels. Toxicol. Pathol. 31, 379-387 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases