Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 1;124(Pt 9):1391-5.
doi: 10.1242/jcs.084111. Epub 2011 Apr 12.

Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade

Affiliations

Phenotypes of pseudohypoaldosteronism type II caused by the WNK4 D561A missense mutation are dependent on the WNK-OSR1/SPAK kinase cascade

Motoko Chiga et al. J Cell Sci. .

Abstract

We recently reported increased phosphorylation of the NaCl cotransporter (NCC) in Wnk4(D561A/+) knock-in mice, an ideal model of the human hereditary hypertensive disease pseudohypoaldosteronism type II (PHAII). Although previous in vitro studies had suggested the existence of a phosphorylation cascade involving the WNK, OSR1 and SPAK kinases, whether the WNK-OSR1/SPAK cascade is in fact fully responsible for NCC phosphorylation in vivo and whether the activation of this cascade is the sole mediator of PHAII remained to be determined. To clarify these issues, we mated the Wnk4(D561A/+) knock-in mice with Spak and Osr1 knock-in mice in which the T-loop threonine residues in SPAK and OSR1 (243 and 185, respectively) were mutated to alanine to prevent activation by WNK kinases. We found that NCC phosphorylation was almost completely abolished in Wnk4(D561A/+)Spak(T)(243A/T243A)Osr1(T185A/+) triple knock-in mice, clearly demonstrating that NCC phosphorylation in vivo is dependent on the WNK-OSR1/SPAK cascade. In addition, the high blood pressure, hyperkalemia and metabolic acidosis observed in Wnk4(D561A/+) mice were corrected in the triple knock-in mice. These results clearly establish that PHAII caused by the WNK4 D561A mutation is dependent on the activation of the WNK-OSR1/SPAK-NCC cascade and that the contribution of other mechanisms to PHAII (independent of the WNK-OSR1/SPAK cascade) could be minimal.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms