Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;32(21):4968-75.
doi: 10.1016/j.biomaterials.2011.03.047. Epub 2011 Apr 13.

A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA

Affiliations

A brain-targeted rabies virus glycoprotein-disulfide linked PEI nanocarrier for delivery of neurogenic microRNA

Do Won Hwang et al. Biomaterials. 2011 Jul.

Abstract

Recent advances in efficient microRNA (miRNA) delivery techniques using brain-targeted nanoparticles offer critical information for understanding the functional role of miRNAs in vivo, and for supporting targeted gene therapy in terms of treating miRNA-associated neurological diseases. Here, we report the rabies virus glycoprotein (RVG)-labeled non-toxic SSPEI nanomaterials capable of neuron-specific miR-124a delivery to neuron in vivo. The RVG-labeled BPEI-SS (RVG-SSPEI) nanocarrier showed less toxicity in acetylcholine receptor-positive Neuro2a cells, and electrostatic interaction of RVG-SSPEI with miR-124a exhibited optimal transfection efficacy. The RVG-SSPEI polymer specifically targeted Neuro2a using cy5.5-miR-124a mixed with RVG-SSPEI. The functional action of miR-124a oligomers released from polyplexes in the cytoplasmic region was evaluated by a reporter vector containing a miR-124a -binding sequence, and showed a significantly reduced reporter signal in a dose-dependent manner. Cy5.5-miR-124a/RVG-SSPEI- injected into mice via tail veins displayed the enhanced accumulation of miR-124a in the isolated brain. Hindrance of the efficient penetration of neuronal cells by size limitation of the miR-124a/RVG-SSPEI improved with the help of mannitol through blood-brain barrier disruption. These findings indicated that the RVG peptide combined with mannitol infusion using SSPEI polymer for neuron-specific targeting in vivo is sufficient to deliver neurogenic microRNA into the brain.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources