Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;32(21):4753-60.
doi: 10.1016/j.biomaterials.2011.03.045. Epub 2011 Apr 12.

The use of dynamic surface chemistries to control msc isolation and function

Affiliations

The use of dynamic surface chemistries to control msc isolation and function

J M Curran et al. Biomaterials. 2011 Jul.

Abstract

Material modifications can be used to induce cell responses, in particular-CH(3) and -NH(2) have shown potential in enhancing the ability of a material to support mesenchymal stem cell (MSC) adhesion and differentiation. Currently this process is variable, due to the lack of definition of controlled contextual presentation of the chemical group of interest across the surface. This paper defines the potential of -CH(3) modified surfaces, with optimised dynamic surface chemistry, to manipulate initial MSC adhesive events, integrin binding, and subsequent cell function. An array of -CH(3) silane modified glass substrates was produced using different -CH(3) chain lengths and mechanisms of bonding to the base substrate. We show that changing the chain length affects the ability of the surfaces to support viable adult MSC adhesion, directly related to induced FGF release, and expression of STRO-1, CD29, 73, 90 and 105. Chlorodimethyloctylsilane (ODMCS) modified surfaces resulted in significant increases of associated adult MSC markers compared to all other -CH(3) modified and control substrates. In contrast Dichlorodimethylsilane (DMDCS) modified surfaces did not support adult MSC adhesion due to high levels of early FGF release, which had an inhibitory effect on adult MSC culture, but enhanced the efficiency and cell selective properties of the substrate in isolation of multi-potent progenitor/MSC from adult human whole blood. Incorporation of optimised -CH(3) groups is a cost effective route for producing substrates that significantly enhance MSC isolation and expansion, highlighting the potential of the optimised substrates to replace RGD and fibronectin modifications in selected applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources