Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;32(21):4830-9.
doi: 10.1016/j.biomaterials.2011.03.037. Epub 2011 Apr 13.

The promotion of axon extension in vitro using polymer-templated fibrin scaffolds

Affiliations

The promotion of axon extension in vitro using polymer-templated fibrin scaffolds

John B Scott et al. Biomaterials. 2011 Jul.

Abstract

Biomaterial nerve cuffs are a clinical alternative to autografts and allografts as a means to repair segmental peripheral nerve defects. However, existing clinical biomaterial constructs lack true incorporation of physical guidance cues into their design. In both two- and three-dimensional systems, it is known that substrate geometry directly affects rates of axon migration. However, the ability to incorporate these cues into biomaterial scaffolds of sufficient porosity to promote robust nerve regeneration in three-dimensional systems is a challenge. We have developed fibrin constructs fabricated by a sacrificial templating approach, yielding scaffolds with multiple 10-250 μm diameter conduits depending on the diameter of the template fibers. The resulting scaffolds contained numerous, highly aligned conduits, had porosity of ∼ 80%, and showed mechanical properties comparable to native nerve (150-300 kPa Young's modulus). We studied the effects of the conduit diameters on the rate of axon migration through the scaffold to investigate if manipulation of this geometry could be used to ultimately promote more rapid bridging of the scaffold. All diameters studied led to axon migration, but in contrast to effects of fiber diameters in other systems, the rate of axon migration was independent of conduit diameter in these templated scaffolds. However, aligned conduits did support more rapid axon migration than non-aligned, tortuous controls.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources