Skeletal muscle hemojuvelin is dispensable for systemic iron homeostasis
- PMID: 21493799
- PMCID: PMC3122950
- DOI: 10.1182/blood-2010-12-327957
Skeletal muscle hemojuvelin is dispensable for systemic iron homeostasis
Abstract
Hepcidin, a hormone produced mainly by the liver, has been shown to inhibit both intestinal iron absorption and iron release from macrophages. Hemojuvelin, a glycophosphatidyl inositol-linked membrane protein, acts as a bone morphogenetic protein coreceptor to activate hepcidin expression through a SMAD signaling pathway in hepatocytes. In the present study, we show in mice that loss of hemojuvelin specifically in the liver leads to decreased liver hepcidin production and increased tissue and serum iron levels. Although it does not have any known function outside of the liver, hemojuvelin is expressed at very high levels in cardiac and skeletal muscle. To explore possible roles for hemojuvelin in skeletal muscle, we analyzed conditional knockout mice that lack muscle hemojuvelin. The mutant animals had no apparent phenotypic abnormalities. We found that systemic iron homeostasis and liver hepcidin expression were not affected by loss of hemojuvelin in skeletal muscle regardless of dietary iron content. We conclude that, in spite of its expression pattern, hemojuvelin is primarily important in the liver.
Figures
References
-
- Roetto A, Papanikolaou G, Politou M, et al. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat Genet. 2003;33(1):21–22. - PubMed
-
- Weinstein DA, Roy CN, Fleming MD, Loda MF, Wolfsdorf JI, Andrews NC. Inappropriate expression of hepcidin is associated with iron refractory anemia: implications for the anemia of chronic disease. Blood. 2002;100(10):3776–3781. - PubMed
-
- Pigeon C, Ilyin G, Courselaud B, et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J Biol Chem. 2001;276(11):7811–7819. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
