MRI using ferumoxytol improves the visualization of central nervous system vascular malformations
- PMID: 21493906
- PMCID: PMC3412426
- DOI: 10.1161/STROKEAHA.110.607994
MRI using ferumoxytol improves the visualization of central nervous system vascular malformations
Abstract
Background and purpose: Central nervous system vascular malformations (VMs) result from abnormal vasculo- and/or angiogenesis. Cavernomas and arteriovenous malformations are also sites of active inflammation. The aim of this study was to determine whether MRI detection of VMs can be improved by administration of ferumoxytol iron oxide nanoparticle, which acts as a blood pool agent at early time points and an inflammatory marker when taken up by tissue macrophages.
Methods: Nineteen patients (11 men, 8 women; mean age, 47.5 years) with central nervous system VMs underwent 3-T MRI both with gadoteridol and ferumoxytol. The ferumoxytol-induced signal changes on the T1-, T2-, and susceptibility-weighted images were analyzed at 25 minutes (range, 21 to 30 minutes) and 24 hours (range, 22 to 27 hours).
Results: Thirty-five lesions (capillary telangiectasia, n=6; cavernoma, n=21; developmental venous anomaly, n=7; arteriovenous malformation, n=1) were seen on the pre- and postgadoteridol images. The postferumoxytol susceptibility-weighted sequences revealed 5 additional VMs (3 capillary telangiectasias, 2 cavernomas) and demonstrated further tributary veins in all patients with developmental venous anomalies. The 24-hour T1 and T2 ferumoxytol-related signal abnormalities were inconsistent among patients and within VM types. No additional area of T1 or T2 enhancement was noted with ferumoxytol compared with gadoteridol in any lesion.
Conclusions: Our findings indicate that the blood pool agent ferumoxytol provides important information about the number and true extent of VMs on the susceptibility-weighted MRI. The use of ferumoxytol as a macrophage imaging agent in the visualization of inflammatory cells within and around the lesions warrants further investigation.
Conflict of interest statement
Figures





Similar articles
-
Magnetic resonance imaging of intracranial tumors: intra-patient comparison of gadoteridol and ferumoxytol.Neuro Oncol. 2011 Feb;13(2):251-60. doi: 10.1093/neuonc/noq172. Epub 2010 Dec 16. Neuro Oncol. 2011. PMID: 21163809 Free PMC article.
-
Potential for differentiation of pseudoprogression from true tumor progression with dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging using ferumoxytol vs. gadoteridol: a pilot study.Int J Radiat Oncol Biol Phys. 2011 Feb 1;79(2):514-23. doi: 10.1016/j.ijrobp.2009.10.072. Epub 2010 Apr 13. Int J Radiat Oncol Biol Phys. 2011. PMID: 20395065 Free PMC article.
-
Comparative analysis of ferumoxytol and gadoteridol enhancement using T1- and T2-weighted MRI in neuroimaging.AJR Am J Roentgenol. 2011 Oct;197(4):981-8. doi: 10.2214/AJR.10.5992. AJR Am J Roentgenol. 2011. PMID: 21940589 Free PMC article.
-
USPIO-Enhanced MRI Neuroimaging: A Review.J Neuroimaging. 2016 Mar-Apr;26(2):161-8. doi: 10.1111/jon.12318. Epub 2015 Dec 3. J Neuroimaging. 2016. PMID: 26932522 Review.
-
[Diagnostic imaging of hemangiomas in the brain].Brain Nerve. 2011 Jan;63(1):5-15. Brain Nerve. 2011. PMID: 21228443 Review. Japanese.
Cited by
-
How to stop using gadolinium chelates for magnetic resonance imaging: clinical-translational experiences with ferumoxytol.Pediatr Radiol. 2022 Feb;52(2):354-366. doi: 10.1007/s00247-021-05098-5. Epub 2021 May 27. Pediatr Radiol. 2022. PMID: 34046709 Free PMC article. Review.
-
Multimodality reporter gene imaging: Construction strategies and application.Theranostics. 2018 Apr 18;8(11):2954-2973. doi: 10.7150/thno.24108. eCollection 2018. Theranostics. 2018. PMID: 29896296 Free PMC article. Review.
-
The Role of Macrophage in the Pathogenesis of Brain Arteriovenous Malformation.Int J Hematol Res. 2015 Jan 1;1(2):52-56. doi: 10.17554/j.issn.2409-3548.2015.01.12. Epub 2015 Jul 6. Int J Hematol Res. 2015. PMID: 26495437 Free PMC article.
-
Peripheral macrophages in the development and progression of structural cerebrovascular pathologies.J Cereb Blood Flow Metab. 2024 Feb;44(2):169-191. doi: 10.1177/0271678X231217001. Epub 2023 Nov 24. J Cereb Blood Flow Metab. 2024. PMID: 38000039 Free PMC article. Review.
-
Brain iron deposition after Ferumoxytol-enhanced MRI: A study of Porcine Brains.Nanotheranostics. 2020 Jun 18;4(4):195-200. doi: 10.7150/ntno.46356. eCollection 2020. Nanotheranostics. 2020. PMID: 32637297 Free PMC article.
References
-
- Brown RD, Jr, Flemming KD, Meyer FB, Cloft HJ, Pollock BE, Link ML. Natural history, evaluation, and management of intracranial vascular malformations. Mayo Clin Proc. 2005;80:269–281. Review. - PubMed
-
- Krings T, Lasjaunias PL, Hans FJ, Mull M, Nijenhuis RJ, Alvarez H, Backes WH, Reinges MH, Rodesch G, Gilsbach JM, Thron AK. Imaging in spinal vascular disease. Neuroimaging Clin N Am. 2007;17:57–72. Review. - PubMed
-
- Gault J, Sarin H, Awadallah NA, Shenkar R, Awad IA. Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. Neurosurgery. 2004;55:1–16. discussion 16–17. Review. - PubMed
-
- Sehgal V, Delproposto Z, Haacke EM, Tong KA, Wycliffe N, Kido DK, Xu Y, Neelavalli J, Haddar D, Reichenbach JR. Clinical applications of neuroimaging with susceptibility-weighted imaging. J Magn Reson Imaging. 2005;22:439–450. Review. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical