Transcranial direct current stimulation for the treatment of focal hand dystonia
- PMID: 21495074
- PMCID: PMC4180819
- DOI: 10.1002/mds.23691
Transcranial direct current stimulation for the treatment of focal hand dystonia
Abstract
The treatment of writer's cramp, a task-specific focal hand dystonia, needs new approaches. A deficiency of inhibition in the motor cortex might cause writer's cramp. Transcranial direct current stimulation modulates cortical excitability and may provide a therapeutic alternative. In this randomized, double-blind, sham-controlled study, we investigated the efficacy of cathodal stimulation of the contralateral motor cortex in 3 sessions in 1 week. Assessment over a 2-week period included clinical scales, subjective ratings, kinematic handwriting analysis, and neurophysiological evaluation. Twelve patients with unilateral dystonic writer's cramp were investigated; 6 received transcranial direct current and 6 sham stimulation. Cathodal transcranial direct current stimulation had no favorable effects on clinical scales and failed to restore normal handwriting kinematics and cortical inhibition. Subjective worsening remained unexplained, leading to premature study termination. Repeated sessions of cathodal transcranial direct current stimulation of the motor cortex yielded no favorable results supporting a therapeutic potential in writer's cramp.
Copyright © 2011 Movement Disorder Society.
Figures
References
-
- Siebner HR, Tormos JM, Ceballos-Baumann AO, Auer C, Catala MD, Conrad B, Pascual-Leone A. Low-frequency repetitive transcranial magnetic stimulation of the motor cortex in writer’s cramp. Neurology. 1999;52:529–537. - PubMed
-
- Murase N, Rothwell JC, Kaji R, Urushihara R, Nakamura K, Murayama N, Igasaki T, Sakata-Igasaki M, Mima T, Ikeda A, Shibasaki H. Subthreshold low-frequency repetitive transcranial magnetic stimulation over the premotor cortex modulates writer’s cramp. Brain. 2005;128:104–115. - PubMed
-
- Priori A, Berardelli A, Rona S, Accornero N, Manfredi M. Polarization of the human motor cortex through the scalp. Neuroreport. 1998;9:2257–2260. - PubMed
-
- Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, Tergau F. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. Journal of Cognitive Neuroscience. 2003;15:619–626. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources