Bacterial-sized particle inflow through sutured clear corneal incisions in a laboratory human model
- PMID: 21497050
- DOI: 10.1016/j.jcrs.2010.11.042
Bacterial-sized particle inflow through sutured clear corneal incisions in a laboratory human model
Abstract
Purpose: To determine the effectiveness of a single radial suture placement in 2 clear corneal incision (CCI) configurations in preventing inflow of bacterial-sized particles.
Setting: Wilmer Eye Institute, Baltimore, Maryland, USA.
Design: Experimental study.
Methods: Ten human globes were used. Two 25-gauge needles connected to a saline solution bag and to a digital manometer were inserted through the limbus 120 degrees apart. Four incision-suture combinations were evaluated sequentially in each cornea. All incisions had the same dimensions (2.75 mm width, 3.00 mm length). Two incisions were single plane, and 2 were biplane. One incision from each configuration was left unsutured, and the other was sutured (10-0 nylon). With a preset 10 mm Hg intraocular pressure (IOP), India ink was applied to the incision site and a sudden IOP fluctuation was induced. Inflow was outlined and measured by planimetry.
Results: There was a significant increase in area and linear distance of India-ink inflow after pressure challenge in all groups (P < .05), but with important differences among them. When the sutured and unsutured groups from each CCI were compared, there was a significantly smaller area of inflow in the 2-step unsutured group (P < .05). The linear inflow was higher in both sutured groups; however, the difference was significant for the 2-step incision configuration only (P < .05).
Conclusions: A single radial suture reduced the area of inflow of bacterial-sized particles but increased the linear distance of inflow in single-plane 3.0 mm incisions. Suture placement in a stepped incision increased inflow of bacterial-sized particles.
Financial disclosure: No author has a financial or proprietary interest in any material or method mentioned.
Copyright © 2011. Published by Elsevier Inc.
Comment in
-
Bacterial-sized particle ingress promoted by suturing: is this true in the real world?J Cataract Refract Surg. 2011 Dec;37(12):2235-6; author reply 2236-2237. doi: 10.1016/j.jcrs.2011.09.027. J Cataract Refract Surg. 2011. PMID: 22108133 No abstract available.
-
India ink intrusion?J Cataract Refract Surg. 2012 Jun;38(6):1117-8. doi: 10.1016/j.jcrs.2012.04.018. J Cataract Refract Surg. 2012. PMID: 22624932 No abstract available.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
