Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul;49(7):1578-83.
doi: 10.1016/j.fct.2011.04.004. Epub 2011 Apr 8.

Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II)

Affiliations

Dual effects of curcumin on neuronal oxidative stress in the presence of Cu(II)

Han-Chang Huang et al. Food Chem Toxicol. 2011 Jul.

Abstract

Alzheimer's disease (AD) is one of the most common neurodegenerative disorders. Elevated copper (Cu) ions are thought to link AD pathology. Curcumin is suggested to treat AD because of its high anti-oxidative activity and coordination to transitional metal ions. In this study, the protective effect of curcumin against the Cu(II)-induced oxidative damage was investigated in primary rat cortical neurons. The neuronal damage was assessed by morphological observation, cell viability, and oxidative stress level. The results showed that curcumin at low dosage protected primary cultured neurons from the 20 μM Cu(II)-induced damage. Low dosage of curcumin depressed oxidative stress levels exacerbated by Cu(II). However, high dosage of curcumin failed to decrease the Cu(II)-induced oxidative stress. When Cu(II) was presented in primary neurons, curcumin at high dosage resulted in chromosomal aberration and cell damage. These results suggest that curcumin, in a concentration-dependent manner, plays both anti-oxidative and pro-oxidative roles in primary neurons treated with Cu(II).

PubMed Disclaimer

Publication types

LinkOut - more resources