Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 28;369(1943):2058-72.
doi: 10.1098/rsta.2010.0341.

Global atmospheric methane: budget, changes and dangers

Affiliations

Global atmospheric methane: budget, changes and dangers

Edward J Dlugokencky et al. Philos Trans A Math Phys Eng Sci. .

Abstract

A factor of 2.5 increase in the global abundance of atmospheric methane (CH(4)) since 1750 contributes 0.5 Wm(-2) to total direct radiative forcing by long-lived greenhouse gases (2.77 Wm(-2) in 2009), while its role in atmospheric chemistry adds another approximately 0.2 Wm(-2) of indirect forcing. Since CH(4) has a relatively short lifetime and it is very close to a steady state, reductions in its emissions would quickly benefit climate. Sensible emission mitigation strategies require quantitative understanding of CH(4)'s budget of emissions and sinks. Atmospheric observations of CH(4) abundance and its rate of increase, combined with an estimate of the CH(4) lifetime, constrain total global CH(4) emissions to between 500 and 600 Tg CH(4) yr(-1). While total global emissions are constrained reasonably well, estimates of emissions by source sector vary by up to a factor of 2. Current observation networks are suitable to constrain emissions at large scales (e.g. global) but not at the regional to national scales necessary to verify emission reductions under emissions trading schemes. Improved constraints on the global CH(4) budget and its break down of emissions by source sector and country will come from an enhanced observation network for CH(4) abundance and its isotopic composition (δ(13)C, δD(D=(2)H) and δ(14)C). Isotopic measurements are a valuable tool in distinguishing among various sources that contribute emissions to an air parcel, once fractionation by loss processes is accounted for. Isotopic measurements are especially useful at regional scales where signals are larger. Reducing emissions from many anthropogenic source sectors is cost-effective, but these gains may be cancelled, in part, by increasing emissions related to economic development in many parts of the world. An observation network that can quantitatively assess these changing emissions, both positive and negative, is required, especially in the context of emissions trading schemes.

PubMed Disclaimer

LinkOut - more resources