Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 May 28;369(1943):2073-86.
doi: 10.1098/rsta.2010.0313.

HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols

Collaborators, Affiliations

HIAPER Pole-to-Pole Observations (HIPPO): fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols

S C Wofsy et al. Philos Trans A Math Phys Eng Sci. .

Abstract

The HIAPER Pole-to-Pole Observations (HIPPO) programme has completed three of five planned aircraft transects spanning the Pacific from 85 ° N to 67 ° S, with vertical profiles every approximately 2.2 ° of latitude. Measurements include greenhouse gases, long-lived tracers, reactive species, O(2)/N(2) ratio, black carbon (BC), aerosols and CO(2) isotopes. Our goals are to address the problem of determining surface emissions, transport strength and patterns, and removal rates of atmospheric trace gases and aerosols at global scales and to provide strong tests of satellite data and global models. HIPPO data show dense pollution and BC at high altitudes over the Arctic, imprints of large N(2)O sources from tropical lands and convective storms, sources of pollution and biogenic CH(4) in the Arctic, and summertime uptake of CO(2) and sources for O(2) at high southern latitudes. Global chemical signatures of atmospheric transport are imaged, showing remarkably sharp horizontal gradients at air mass boundaries, weak vertical gradients and inverted profiles (maxima aloft) in both hemispheres. These features challenge satellite algorithms, global models and inversion analyses to derive surface fluxes. HIPPO data can play a crucial role in identifying and resolving questions of global sources, sinks and transport of atmospheric gases and aerosols.

PubMed Disclaimer