Mammalian 5' C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance
- PMID: 21504833
- PMCID: PMC3082866
- DOI: 10.1016/j.molcel.2011.03.015
Mammalian 5' C-rich telomeric overhangs are a mark of recombination-dependent telomere maintenance
Abstract
Recent evidence for 5'-cytosine (C)-rich overhangs at the telomeres of the nematode Caenorhabditis elegans provided the impetus to re-examine the end structure of mammalian telomeres. Two-dimensional (2D) gel electrophoresis, single telomere-length analysis (STELA), and strand-specific exonuclease assays revealed the presence of a 5'-C-rich overhang at the telomeres of human and mouse chromosomes. C-overhangs were prominent in G1/S arrested as well as terminally differentiated cells, indicating that they did not represent replication intermediates. C-rich overhangs were far more prevalent in tumor cells engaged in the alternative lengthening of telomeres (ALT) pathway of telomere maintenance, which relies on the homologous recombination (HR) machinery. Transient siRNA-based depletion of the HR-specific proteins RAD51, RAD52, and XRCC3 resulted in changes in C-overhang levels, implicating the involvement of 5'-C-overhangs in the HR-dependent pathway of telomere maintenance.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures
References
-
- Baird DM, Rowson J, Wynford-Thomas D, Kipling D. Extensive allelic variation and ultrashort telomeres in senescent human cells. Nat Genet. 2003;33:203–207. - PubMed
-
- Baumann P, Cech TR. Pot1, the putative telomere end-binding protein in fission yeast and humans. Science. 2001;292:1171–1175. - PubMed
-
- Benson FE, Baumann P, West SC. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature. 1998;391:401–404. [see comments] - PubMed
-
- Bishop DK, Ear U, Bhattacharyya A, Calderone C, Beckett M, Weichselbaum RR, Shinohara A. Xrcc3 is required for assembly of Rad51 complexes in vivo. J Biol Chem. 1998;273:21482–21488. - PubMed
-
- Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR. Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines. Nat Med. 1997;3:1271–1274. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials
