Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr 26;50(18):4068-93.
doi: 10.1002/anie.201006017. Epub 2011 Apr 19.

Dearomatization strategies in the synthesis of complex natural products

Affiliations
Review

Dearomatization strategies in the synthesis of complex natural products

Stéphane P Roche et al. Angew Chem Int Ed Engl. .

Abstract

Evolution in the field of the total synthesis of natural products has led to exciting developments over the last decade. Numerous chemoselective and enantioselective methodologies have emerged from total syntheses, resulting in efficient access to many important natural product targets. This Review highlights recent developments concerning dearomatization, a powerful strategy for the total synthesis of architecturally complex natural products wherein planar, aromatic scaffolds are converted to three-dimensional molecular architectures.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Classical examples of dearomatization in complex synthesis: a) Myers et al.;[4] b) Corey et al.;[5] c) Schultz et al.;[6] d) Nicolaou et al.;[8] e) Danishefsky et al.;[9] f) Corey et al.;[10] g) Magnus et al.[11] Abbreviations of reagents and protecting groups are defined at the end of the Review.
Figure 2
Figure 2
Recent work highlighting syntheses of complex natural products using dearomatization strategies (2002–2010).
Scheme 1
Scheme 1
Preparation of epoxyquinol synthons by enzymatic dihydroxylation of iodobenzene and elaboration to hexacyclinol (Banwell et al., 2009).[19]
Scheme 2
Scheme 2
Approach to salvileucalin B: Preparation of the pentacyclic framework by Buchner dearomatization (Reisman et al., 2010).[21]
Scheme 3
Scheme 3
Total synthesis of penifulvin A using photoinduced [3+2] cycloaddition (Mulzer et al., 2009).[23]
Scheme 4
Scheme 4
Enantioselective synthesis of (−)-isodomoic acid C by de-aromatizing anionic cyclization (Clayden et al., 2005).[25]
Scheme 5
Scheme 5
Alkylative dearomatization by thionium activation (Procter et al., 2008).[26]
Scheme 6
Scheme 6
Total synthesis of cleroindicin using oxidative dearomatization with Oxone (Carreño/Urbano et al., 2007).[28]
Scheme 7
Scheme 7
Approach to bacchopetiolone employing oxidative spirolactonization/dearomatization (Wood et al., 2006).[29c]
Scheme 8
Scheme 8
Total synthesis of acutumine including late-stage dearomatization (Castle et al., 2009).[30]
Scheme 9
Scheme 9
Total synthesis of (+)-puupehenone involving the regio-selective oxidative dearomatization of a catechol (Quideau et al., 2002).[31]
Scheme 10
Scheme 10
Approach to the cortisatin A framework through tandem oxidative dearomatization/[3+2] cycloaddition (Sorensen et al., 2010).[32]
Scheme 11
Scheme 11
Total synthesis of (+)-rishirilide B by means of the diastereoselective para-oxidative dearomatization of a resorcinol substrate (Pettus et al., 2006).[36]
Scheme 12
Scheme 12
Total synthesis of (+)-biscarvacrol using a tethered chiral auxiliary for ortho-oxidative dearomatization (Quideau et al., 2008).[37]
Scheme 13
Scheme 13
Total synthesis of (−)-mitorubin employing enantioselective ortho-oxidative dearomatization (Porco, Jr. et al., 2006).[38]
Scheme 14
Scheme 14
Formal synthesis of (+)-maritidine employing oxidative dearomatization/C-arylation (Kita et al., 2008).[41]
Scheme 15
Scheme 15
Total synthesis of (−)-platensimycin involving an oxidative para-spiroannulation strategy (Nicolaou et al., 2007).[42]
Scheme 16
Scheme 16
Total synthesis of dalesconol B employing a Friedel–Crafts/oxidative para-cyclization tandem sequence (Snyder et al., 2010).[44]
Scheme 17
Scheme 17
Approach to cortistatin A by means of para-alkylative phenol dearomatization (Danishefsky et al., 2008).[46]
Scheme 18
Scheme 18
Approach to (±)-platensimycin using intramolecular para-alkylative phenol dearomatization (Njardarson et al., 2009).[47]
Scheme 19
Scheme 19
Total synthesis of (±)-clusianone using a MEM sequence (Porco, Jr. et al., 2007).[48]
Scheme 20
Scheme 20
Total synthesis of (±)-garsubellin A by means of para-alkylative dearomatization of a phloroglucinol (Danishefsky et al., 2006).[50]
Scheme 21
Scheme 21
Total syntheses of gambogin involving Claisen rearrangement/dearomatization (Theodorakis et al., 2004; Nicolaou et al., 2005).[53, 54]
Scheme 22
Scheme 22
Total synthesis of (−)-longithorone A through oxidation with a hypervalent iodine reagent and Diels–Alder cycloaddition (Shair et al., 2002).[59]
Scheme 23
Scheme 23
Total synthesis of (+)-elisabethin A through oxidative dearomatization/intramolecular Diels–Alder cycloaddition (Mulzer et al., 2003).[61a]
Scheme 24
Scheme 24
Total synthesis of (±)-penicillone A using an ortho-oxidative dearomatization/IMDA cascade (Liao et al., 2007).[63]
Scheme 25
Scheme 25
Total synthesis of (±)-O-debenzoylttashironin through oxidative dearomatization/Diels–Alder cycloaddition (Danishefsky et al., 2006).[64]
Scheme 26
Scheme 26
Approach to maeocrystal V using oxidative ortho-dearomatization/IMDA cycloaddition (Baran et al., 2009).[65]
Scheme 27
Scheme 27
Total synthesis of helisorin with an ortho-oxidative dearomatization and a retro-Diels–Alder/Diels–Alder sequence (Snyder et al., 2009).[67]
Scheme 28
Scheme 28
Total synthesis of (+)-chamaecypanone C by means of enantioselective copper-mediated oxidative dearomatization/[4+2] cycloaddition (Porco, Jr. et al., 2009).[69]
Scheme 29
Scheme 29
Total synthesis of (±)-stenine through dearomatization of a 2-thiomethylfuran (Padwa et al., 2002).[75]
Scheme 30
Scheme 30
Total synthesis of (±)-merrilactone A: catalytic Nazarov cyclization using the dearomatization of a 2-silyloxyfuran (Frontier et al., 2008).[76]
Scheme 31
Scheme 31
Formal synthesis of (±)-morphine highlighted by an IMDA dearomatization of a benzofuran (Stork et al., 2009).[78]
Scheme 32
Scheme 32
Synthetic approach toward (−)-guanacastepene E: oxidative radical annulation by means of furan dearomatization (Trauner et al., 2005).[80]
Scheme 33
Scheme 33
Approach to parvineostemonine employing asymmetric oxyallyl cation [4+3] cycloaddition for pyrrole dearomatization (Hsung et al., 2007).[82]
Scheme 34
Scheme 34
Total synthesis of chartelline C by brominative indole dearomatization/amide trapping (Baran et al., 2006).[85]
Scheme 35
Scheme 35
Total synthesis of (±)-norfluorocurarine using IMDA indolic dearomatization (Vanderwal et al., 2009).[86]
Scheme 36
Scheme 36
Total synthesis of (+)-minfiensine: enantioselective iminium-catalyzed Diels–Alder dearomatization of indoles (MacMillan et al., 2009).[89]
Scheme 37
Scheme 37
Total synthesis of (+)-fendleridine using tandem [4+2]/[3+2] cycloadditions of 1,3,4-oxadiazoles with indole dearomatization (Boger et al., 2010).[91]
Scheme 38
Scheme 38
Total synthesis of (−)-phalarine through indole dearomatization: Pictet–Spengler cyclization and intramolecular carbocation trapping (Danishefsky et al., 2010).[92c]
Scheme 39
Scheme 39
Total synthesis of (+)-cannabisativine using the diastereoselective C2-alkylation of pyridiniums (Comins et al., 2004).[95]
Scheme 40
Scheme 40
Total synthesis of (+)-lepadin B using the diastereoselective alkylation of a pyridinium (Charette et al., 2008).[97]
Scheme 41
Scheme 41
Total synthesis of (±)-hetisine employing the intramolecular 1,3-dipolar cycloaddition of oxidoisoquinolium betaines (Gin et al., 2006).[100]
Scheme 42
Scheme 42
New strategies for arene dearomatization using transition-metal catalysis (Harman,[102] Y. Yamamoto,[103] Buchwald[105] et al., 2008–2010).
Scheme 43
Scheme 43
Enantioselective and catalytic oxidative dearomatization methodologies (Kita,[106] Ishihara,[107] Quideau,[108] Birman[110] et al., 2008–2010).
Scheme 44
Scheme 44
Organocatalytic desymmetrization of meso dienones obtained through oxidative dearomatization (Rovis,[112] Gaunt,[113] You[114] et al., 2006–2010).

Similar articles

Cited by

References

    1. Franklin JL. J. Am. Chem. Soc. 1950;72:4278–4280.
    1. Krygowski TM, Cyraňski MK. Chem. Rev. 2001;101:1385–1419. - PubMed
    2. Balaban AT, Oniciu DC, Katritzky AR. Chem. Rev. 2004;104:2777–2812. - PubMed
    3. Chen Z, Wannere CS, Corminboeuf C, Puchta R, von P, Schleyer R. Chem. Rev. 2005;105:3842–3888. - PubMed
    1. Boll M. J. Mol. Microbiol. Biotechnol. 2005;10:132–142. - PubMed
    2. Thiele B, Rieder O, Golding BT, Müller M, Boll M. J. Am. Chem. Soc. 2008;130:14050–14051. - PubMed
    3. Kung JW, Baumann S, Von Bergen M, Müller M, Hagedoorn P-L, Hagen WR, Boll M. J. Am. Chem. Soc. 2010;132:9850–9856. - PubMed
    1. Myers AG, Siegel DR, Buzard DJ, Charest MG. Org. Lett. 2001;3:2923–2926. For a recent example, see: Mihovilovic MD, Leisch HG, Mereiter K. Tetrahedron Lett. 2004;45:7087–7090.

    1. Corey EJ, Girotra NN, Mathew CT. J. Am. Chem. Soc. 1969;91:1557–1559.

Publication types

LinkOut - more resources