Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice
- PMID: 21508227
- PMCID: PMC3100164
- DOI: 10.1523/JNEUROSCI.6498-10.2011
Nutrient-sensing hypothalamic TXNIP links nutrient excess to energy imbalance in mice
Abstract
Nutrient excess in obesity and diabetes is emerging as a common putative cause for multiple deleterious effects across diverse cell types, responsible for a variety of metabolic dysfunctions. The hypothalamus is acknowledged as an important regulator of whole-body energy homeostasis, through both detection of nutrient availability and coordination of effectors that determine nutrient intake and utilization, thus preventing cellular and whole-body nutrient excess. However, the mechanisms underlying hypothalamic nutrient detection and its impact on peripheral nutrient utilization remain poorly understood. Recent data suggest a role for thioredoxin-interacting protein (TXNIP) as a molecular nutrient sensor important in the regulation of energy metabolism, but the role of hypothalamic TXNIP in the regulation of energy balance has not been evaluated. Here we show in mice that TXNIP is expressed in nutrient-sensing neurons of the mediobasal hypothalamus, responds to hormonal and nutrient signals, and regulates adipose tissue metabolism, fuel partitioning, and glucose homeostasis. Hypothalamic expression of TXNIP is induced by acute nutrient excess and in mouse models of obesity and diabetes, and downregulation of mediobasal hypothalamic TXNIP expression prevents diet-induced obesity and insulin resistance. Thus, mediobasal hypothalamic TXNIP plays a critical role in nutrient sensing and the regulation of fuel utilization.
Figures








Similar articles
-
TXNIP in Agrp neurons regulates adiposity, energy expenditure, and central leptin sensitivity.J Neurosci. 2012 Jul 18;32(29):9870-7. doi: 10.1523/JNEUROSCI.0353-12.2012. J Neurosci. 2012. PMID: 22815502 Free PMC article.
-
Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.Mol Cell Endocrinol. 2015 Dec 15;418 Pt 1:9-16. doi: 10.1016/j.mce.2015.08.002. Epub 2015 Aug 8. Mol Cell Endocrinol. 2015. PMID: 26261054 Review.
-
Induction of the metabolic regulator Txnip in fasting-induced and natural torpor.Endocrinology. 2013 Jun;154(6):2081-91. doi: 10.1210/en.2012-2051. Epub 2013 Apr 12. Endocrinology. 2013. PMID: 23584857 Free PMC article.
-
High beta-cell mass prevents streptozotocin-induced diabetes in thioredoxin-interacting protein-deficient mice.Am J Physiol Endocrinol Metab. 2009 Jun;296(6):E1251-61. doi: 10.1152/ajpendo.90619.2008. Epub 2009 Feb 17. Am J Physiol Endocrinol Metab. 2009. PMID: 19223654 Free PMC article.
-
Hypothalamic leptin regulation of energy homeostasis and glucose metabolism.J Physiol. 2007 Sep 1;583(Pt 2):437-43. doi: 10.1113/jphysiol.2007.135590. Epub 2007 Jun 21. J Physiol. 2007. PMID: 17584844 Free PMC article. Review.
Cited by
-
The Complexity of Sporadic Alzheimer's Disease Pathogenesis: The Role of RAGE as Therapeutic Target to Promote Neuroprotection by Inhibiting Neurovascular Dysfunction.Int J Alzheimers Dis. 2012;2012:734956. doi: 10.1155/2012/734956. Epub 2012 Mar 11. Int J Alzheimers Dis. 2012. PMID: 22482078 Free PMC article.
-
A nutrigenomic framework to identify time-resolving responses of hepatic genes in diet-induced obese mice.Mol Cells. 2013 Jul;36(1):25-38. doi: 10.1007/s10059-013-2336-3. Epub 2013 Jun 26. Mol Cells. 2013. PMID: 23813319 Free PMC article.
-
TXNIP/TBP-2: A Master Regulator for Glucose Homeostasis.Antioxidants (Basel). 2020 Aug 18;9(8):765. doi: 10.3390/antiox9080765. Antioxidants (Basel). 2020. PMID: 32824669 Free PMC article. Review.
-
Thioredoxin and thioredoxin target proteins: from molecular mechanisms to functional significance.Antioxid Redox Signal. 2013 Apr 1;18(10):1165-207. doi: 10.1089/ars.2011.4322. Epub 2012 Jun 26. Antioxid Redox Signal. 2013. PMID: 22607099 Free PMC article. Review.
-
Leucine-rich repeat kinase 2 (LRRK2)-deficient rats exhibit renal tubule injury and perturbations in metabolic and immunological homeostasis.PLoS One. 2013 Jun 14;8(6):e66164. doi: 10.1371/journal.pone.0066164. Print 2013. PLoS One. 2013. PMID: 23799078 Free PMC article.
References
-
- Andrews ZB, Diano S, Horvath TL. Mitochondrial uncoupling proteins in the CNS: in support of function and survival. Nat Rev Neurosci. 2005;6:829–840. - PubMed
-
- Azzara AV, Sokolnicki JP, Schwartz GJ. Central melanocortin receptor agonist reduces spontaneous and scheduled meal size but does not augment duodenal preload-induced feeding inhibition. Physiol Behav. 2002;77:411–416. - PubMed
-
- Benani A, Troy S, Carmona MC, Fioramonti X, Lorsignol A, Leloup C, Casteilla L, Pénicaud L. Role for mitochondrial reactive oxygen species in brain lipid sensing: redox regulation of food intake. Diabetes. 2007;56:152–160. - PubMed
-
- Bence KK, Delibegovic M, Xue B, Gorgun CZ, Hotamisligil GS, Neel BG, Kahn BB. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat Med. 2006;12:917–924. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases