Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Jul;131(1):1-17.
doi: 10.1016/j.pharmthera.2011.03.015. Epub 2011 Apr 14.

Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases?

Affiliations
Review

Modulation of cytochrome-derived epoxyeicosatrienoic acids pathway: a promising pharmacological approach to prevent endothelial dysfunction in cardiovascular diseases?

Jeremy Bellien et al. Pharmacol Ther. 2011 Jul.

Abstract

Progress in methods of investigating endothelial function in humans has led to the demonstration that endothelial dysfunction is an early process involved in the pathophysiology of cardiovascular diseases, and represents a new independent therapeutic target that may help to improve patient health. The administration of antioxidant, anti-hypertensive, lipid lowering or antidiabetic agents appear insufficient to fully restore the normal functions of the vascular endothelium and specific therapeutic strategies are still lacking. In this context, one emerging promising pharmacological approach to prevent endothelial dysfunction is to restore epoxyeicosatrienoic acids (EETs) pathway. EETs are eicosanoids synthesized by endothelial cytochrome epoxygenases that contribute to the regulation of endothelium-dependent dilatation, vascular inflammation, cell proliferation, angiogenesis and hemostasis. Moreover, it has been shown in vivo in humans that EETs act as endothelium-derived hyperpolarizing factors to regulate the vascular tone in both resistance and conduit arteries. In various cardiovascular disorders such as arterial hypertension, a decrease in EETs availability, due to an increased degradation by soluble epoxide hydrolase (sEH), is a deleterious mechanism that contributes to endothelial dysfunction and promotes cardiovascular inflammation and remodeling. Subsequently, the use of sEH inhibitors, which have been shown to decrease blood pressure, limit ischemic injury and prevent hypertrophy in various animal models, appears to be an attractive opportunity to restore endothelial function. Future research will be necessary to demonstrate that sEH inhibitors can prevent endothelial dysfunction in human arteries, which may help to prevent the development of cardiovascular complications and improve cardiovascular prognosis in patients.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources