Light-mediated control of translational initiation of ribulose-1, 5-bisphosphate carboxylase in amaranth cotyledons
- PMID: 2152128
- PMCID: PMC159931
- DOI: 10.1105/tpc.2.8.795
Light-mediated control of translational initiation of ribulose-1, 5-bisphosphate carboxylase in amaranth cotyledons
Abstract
In cotyledons of 6-day-old amaranth seedlings, the large subunit (LSU) and the small subunit (SSU) polypeptides of ribulose-1,5-bisphosphate carboxylase are not synthesized in the absence of light. When dark-grown seedlings were transferred into light, synthesis of both polypeptides was induced within the first 3 to 5 hr of illumination without any significant changes in levels of their mRNAs. In cotyledons of light-grown seedlings and of dark-grown seedlings transferred into light for 5 hr (where ribulose-1,5-bisphosphate carboxylase synthesis was readily detected in vivo), the LSU and SSU mRNAs were associated with polysomes. In cotyledons of dark-grown seedlings, these two mRNAs were not found on polysomes. In contrast to the SSU message, mRNAs encoding the nonlight-regulated, nuclear-encoded proteins actin and ubiquitin were associated with polysomes regardless of the light conditions. Similarly, mRNA from at least one chloroplast-encoded gene (rpl2) was found on polysomes in the dark as well as in the light. These results indicate an absence of translational initiation in cotyledons of dark-grown seedlings which is specific to a subset of nuclear- and chloroplast-encoded genes including the SSU and LSU, respectively. Upon illumination, synthesis of both polypeptides, and possibly other proteins involved in light-mediated chloroplast development, was induced at the level of translational initiation.
References
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
