Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 19;6(4):e18850.
doi: 10.1371/journal.pone.0018850.

Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis

Affiliations

Multiplexed immunoassay panel identifies novel CSF biomarkers for Alzheimer's disease diagnosis and prognosis

Rebecca Craig-Schapiro et al. PLoS One. .

Abstract

Background: Clinicopathological studies suggest that Alzheimer's disease (AD) pathology begins ∼10-15 years before the resulting cognitive impairment draws medical attention. Biomarkers that can detect AD pathology in its early stages and predict dementia onset would, therefore, be invaluable for patient care and efficient clinical trial design. We utilized a targeted proteomics approach to discover novel cerebrospinal fluid (CSF) biomarkers that can augment the diagnostic and prognostic accuracy of current leading CSF biomarkers (Aβ42, tau, p-tau181).

Methods and findings: Using a multiplexed Luminex platform, 190 analytes were measured in 333 CSF samples from cognitively normal (Clinical Dementia Rating [CDR] 0), very mildly demented (CDR 0.5), and mildly demented (CDR 1) individuals. Mean levels of 37 analytes (12 after Bonferroni correction) were found to differ between CDR 0 and CDR>0 groups. Receiver-operating characteristic curve analyses revealed that small combinations of a subset of these markers (cystatin C, VEGF, TRAIL-R3, PAI-1, PP, NT-proBNP, MMP-10, MIF, GRO-α, fibrinogen, FAS, eotaxin-3) enhanced the ability of the best-performing established CSF biomarker, the tau/Aβ42 ratio, to discriminate CDR>0 from CDR 0 individuals. Multiple machine learning algorithms likewise showed that the novel biomarker panels improved the diagnostic performance of the current leading biomarkers. Importantly, most of the markers that best discriminated CDR 0 from CDR>0 individuals in the more targeted ROC analyses were also identified as top predictors in the machine learning models, reconfirming their potential as biomarkers for early-stage AD. Cox proportional hazards models demonstrated that an optimal panel of markers for predicting risk of developing cognitive impairment (CDR 0 to CDR>0 conversion) consisted of calbindin, Aβ42, and age.

Conclusions/significance: Using a targeted proteomic screen, we identified novel candidate biomarkers that complement the best current CSF biomarkers for distinguishing very mildly/mildly demented from cognitively normal individuals. Additionally, we identified a novel biomarker (calbindin) with significant prognostic potential.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have read the journal's policy and have the following conflicts: Max Kuhn, Eve H. Pickering, Kelly R. Bales are paid employees of Pfizer. They have no other competing interests relevant to the data in this manuscript. Thomas P. Misko and Holly Soares were paid employees of Pfizer during the course of this study. They have no other competing interests relevant to the data in this manuscript. David M. Holtzman co-founded the company C2N Diagnostics and has ownership interests. He serves on the Scientific Advisory Boards of En Vivo and Satori. He has no other competing interests relevant to the data in this manuscript. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. Rebecca Craig-Schapiro, Chengjie Xiong, Jingxia Liu, Richard J. Perrin, and Anne M. Fagan have no competing interests to declare.

Figures

Figure 1
Figure 1. ROC analyses, graphical representation.
ROC analyses assessed the ability of the traditional biomarkers (blue) and of the 37 RBM analytes with p<0.05 in the univariate analyses (red) to discriminate CDR>0 from CDR 0 individuals. Combining the best-performing of the traditional biomarkers, the tau/Aβ42 ratio, with RBM analytes improved upon the AUC of tau/Aβ42 in many cases (green).
Figure 2
Figure 2. Venn diagram of the top 15 predictors for machine learning algorithms with a built-in importance measure.
For the four models with a built-in importance statistic (i.e., Boosted Tree, Nearest Shrunken Centroids, Random Forests, and Partial Least Squares), there is considerable overlap in the top 15 predictors for each model. Additionally, nearly all of the markers found to best discriminate CDR 0 from CDR>0 participants in the more targeted ROC analyses (Table 5), as shown here (‘Targeted’), were also identified as the top predictors in the machine learning models.

References

    1. Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer's disease. Neurobiol Dis. 2009;35:128–140. - PMC - PubMed
    1. Hampel H, Burger K, Teipel SJ, Bokde AL, Zetterberg H, Blennow K. Core candidate neurochemical and imaging biomarkers of Alzheimer's disease. Alzheimers Dement. 2008;4:38–48. - PubMed
    1. Jack CR, Jr, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurol. 2010;9:119–128. - PMC - PubMed
    1. Perrin RJ, Fagan AM, Holtzman DM. Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature. 2009;461:916–922. - PMC - PubMed
    1. Blennow K, Hampel H. CSF Markers for Incipient Alzheimer's Disease. Lancet Neurol. 2003;2:605–613. - PubMed

Publication types