Differentiating passive from transporter-mediated uptake by PepT1: a comparison and evaluation of four methods
- PMID: 21529830
- PMCID: PMC3150389
- DOI: 10.1016/j.jss.2011.02.018
Differentiating passive from transporter-mediated uptake by PepT1: a comparison and evaluation of four methods
Abstract
Background: To quantify transmembrane transport of dipeptides by PepT1, passive uptake (non-PepT1 mediated) must be subtracted from total (measured) uptake. Three methods have been described to estimate passive uptake: perform experiments at cold temperatures, inhibit target dipeptide uptake with a greater concentration of a second dipeptide, or use modified Michaelis-Menten kinetics. We hypothesized that performing uptake experiments at pH 8.0 would estimate passive uptake accurately, because PepT1 requires a proton gradient. Our aim was to determine the most accurate method to estimate passive uptake.
Methods: Caco-2 cells were incubated with various concentrations of glycyl-sarcosine (gly-sar) at pH 6.0 and at 37°C to measure total uptake. Passive uptake was estimated: (1) by incubating Caco-2 cells with varying concentrations of gly-sar at 4°C, (2) in the presence of 50 mM glycyl-leucine, (3) in solution at pH 8.0, or (4) using modified Michaelis-Menten kinetics. PepT1-mediated uptake was calculated by subtracting passive uptake from total uptake. K(m), V(max), and % gly-sar transported by PepT1 were calculated and compared.
Results: K(m), V(max), and % gly-sar transported by PepT1 varied from 0.7 to 2.4 mM, 8.4 to 21.0 nmol/mg protein/10 min, and 69% to 87%, respectively. Uptakes calculated with cold, 50 mM gly-leu and using modified Michaelis-Menten kinetics were similar but differed significantly from uptake at pH 8.0 (P < 0.001).
Conclusions: Estimating passive uptake at pH 8.0 does not appear to be accurate. Measuring uptake at cold temperatures or in the presence of a greater concentration of a second dipeptide, and confirming results with modified Michaelis-Menten kinetics is recommended.
Copyright © 2011 Elsevier Inc. All rights reserved.
Figures



References
-
- Bhardwaj RK, Herrera-Ruiz D, Sinko PJ, Gudmundsson OS, Knipp G. Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J Pharmacol Exp Ther. 2005;314:1093–1100. - PubMed
-
- D’Souza VM, Buckley DJ, Buckley AR, Pauletti GM. Extracellular glucose concentration alters functional activity of the intestinal oligopeptide transporter (PepT-1) in Caco-2 cells. J Pharm Sci. 2003;92:594–603. - PubMed
-
- Herrera-Ruiz D, Faria TN, Bhardwaj RK, Timoszyk J, Gudmundsson OS, Moench P, Wall DA, Smith RL, Knipp GT. A novel hPepT1 stably transfected cell line: establishing a correlation between expression and function. Mol Pharm. 2004;1:136–144. - PubMed
-
- Chu C, Okamoto CT, Hamm-Alvarez SF, Lee VH. Stable transfection of MDCK cells with epitope-tagged human PepT1. Pharm Res. 2004;21:1970–1973. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous