Proteasome function is required for biological timing throughout the twenty-four hour cycle
- PMID: 21530263
- PMCID: PMC3102177
- DOI: 10.1016/j.cub.2011.03.060
Proteasome function is required for biological timing throughout the twenty-four hour cycle
Abstract
Circadian clocks were, until recently, seen as a consequence of rhythmic transcription of clock components, directed by transcriptional/translational feedback loops (TTFLs). Oscillations of protein modification were then discovered in cyanobacteria. Canonical posttranslational signaling processes have known importance for clocks across taxa. More recently, evidence from the unicellular eukaryote Ostreococcus tauri revealed a transcription-independent, rhythmic protein modification shared in anucleate human cells. In this study, the Ostreococcus system reveals a central role for targeted protein degradation in the mechanism of circadian timing. The Ostreococcus clockwork contains a TTFL involving the morning-expressed CCA1 and evening-expressed TOC1 proteins. Cellular CCA1 and TOC1 protein content and degradation rates are analyzed qualitatively and quantitatively using luciferase reporter fusion proteins. CCA1 protein degradation rates, measured in high time resolution, feature a sharp clock-regulated peak under constant conditions. TOC1 degradation peaks in response to darkness. Targeted protein degradation, unlike transcription and translation, is shown to be essential to sustain TTFL rhythmicity throughout the circadian cycle. Although proteasomal degradation is not necessary for sustained posttranslational oscillations in transcriptionally inactive cells, TTFL and posttranslational oscillators are normally coupled, and proteasome function is crucial to sustain both.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Figures




Comment in
-
Circadian rhythms: lost in post-translation.Curr Biol. 2011 May 24;21(10):R400-2. doi: 10.1016/j.cub.2011.04.024. Curr Biol. 2011. PMID: 21601802
Similar articles
-
Circadian rhythms: lost in post-translation.Curr Biol. 2011 May 24;21(10):R400-2. doi: 10.1016/j.cub.2011.04.024. Curr Biol. 2011. PMID: 21601802
-
Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus.Plant Cell. 2009 Nov;21(11):3436-49. doi: 10.1105/tpc.109.068825. Epub 2009 Nov 30. Plant Cell. 2009. PMID: 19948792 Free PMC article.
-
Circadian rhythms persist without transcription in a eukaryote.Nature. 2011 Jan 27;469(7331):554-8. doi: 10.1038/nature09654. Nature. 2011. PMID: 21270895 Free PMC article.
-
Cellular mechanisms of circadian pacemaking: beyond transcriptional loops.Handb Exp Pharmacol. 2013;(217):67-103. doi: 10.1007/978-3-642-25950-0_4. Handb Exp Pharmacol. 2013. PMID: 23604476 Review.
-
[Circadian oscillators and hormones].Tsitologiia. 2013;55(11):761-77. Tsitologiia. 2013. PMID: 25509132 Review. Russian.
Cited by
-
Circadian Control of Protein Synthesis.Bioessays. 2025 Mar;47(3):e202300158. doi: 10.1002/bies.202300158. Epub 2024 Dec 12. Bioessays. 2025. PMID: 39668398 Free PMC article. Review.
-
Studying the Human Microbiota: Advances in Understanding the Fundamentals, Origin, and Evolution of Biological Timekeeping.Int J Mol Sci. 2023 Nov 10;24(22):16169. doi: 10.3390/ijms242216169. Int J Mol Sci. 2023. PMID: 38003359 Free PMC article. Review.
-
Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.Front Plant Sci. 2016 Jul 12;7:1007. doi: 10.3389/fpls.2016.01007. eCollection 2016. Front Plant Sci. 2016. PMID: 27462335 Free PMC article.
-
Metabolic and nontranscriptional circadian clocks: eukaryotes.Annu Rev Biochem. 2014;83:165-89. doi: 10.1146/annurev-biochem-060713-035623. Epub 2014 Mar 3. Annu Rev Biochem. 2014. PMID: 24606143 Free PMC article. Review.
-
Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms.Commun Biol. 2021 Sep 30;4(1):1147. doi: 10.1038/s42003-021-02680-3. Commun Biol. 2021. PMID: 34593975 Free PMC article.
References
-
- Nakajima M., Imai K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., Oyama T., Kondo T. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science. 2005;308:414–415. - PubMed
-
- Tomita J., Nakajima M., Kondo T., Iwasaki H. No transcription-translation feedback in circadian rhythm of KaiC phosphorylation. Science. 2005;307:251–254. - PubMed
-
- Godinho S.I., Maywood E.S., Shaw L., Tucci V., Barnard A.R., Busino L., Pagano M., Kendall R., Quwailid M.M., Romero M.R. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science. 2007;316:897–900. - PubMed
-
- Hastings M.H., Maywood E.S., O'Neill J.S. Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 2008;18:R805–R815. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources