Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics
- PMID: 21531166
- DOI: 10.1016/j.pbi.2011.04.003
Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics
Abstract
In the course of evolution, plants adapted to widely differing metal availabilities in soils and therefore represent an important source of natural variation of metal homeostasis networks. Research on plant metal homeostasis can thus provide insights into the functioning, regulation and adaptation of biological networks. Here, we describe major recent breakthroughs in the understanding of the genetic and molecular basis of metal hyperaccumulation and associated hypertolerance, a naturally selected complex trait which represents an extreme adaptation of the metal homeostasis network. Investigations in this field reveal further the molecular alterations underlying the evolution of natural phenotypic diversity and provide a highly relevant framework for comparative genomics.
Copyright © 2011 Elsevier Ltd. All rights reserved.
Similar articles
-
Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4.Nature. 2008 May 15;453(7193):391-5. doi: 10.1038/nature06877. Epub 2008 Apr 20. Nature. 2008. PMID: 18425111
-
Root and shoot transcriptome analysis of two ecotypes of Noccaea caerulescens uncovers the role of NcNramp1 in Cd hyperaccumulation.Plant J. 2014 May;78(3):398-410. doi: 10.1111/tpj.12480. Epub 2014 Apr 2. Plant J. 2014. PMID: 24547775
-
Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.Mol Ecol. 2006 Sep;15(10):3045-59. doi: 10.1111/j.1365-294X.2006.02981.x. Mol Ecol. 2006. PMID: 16911220
-
Molecular mechanisms of metal hyperaccumulation in plants.New Phytol. 2009 Mar;181(4):759-776. doi: 10.1111/j.1469-8137.2008.02748.x. New Phytol. 2009. PMID: 19192189 Review.
-
Metal hyperaccumulation in plants.Annu Rev Plant Biol. 2010;61:517-34. doi: 10.1146/annurev-arplant-042809-112156. Annu Rev Plant Biol. 2010. PMID: 20192749 Review.
Cited by
-
Functional analysis of the three HMA4 copies of the metal hyperaccumulator Arabidopsis halleri.J Exp Bot. 2015 Sep;66(19):5783-95. doi: 10.1093/jxb/erv280. Epub 2015 Jun 4. J Exp Bot. 2015. PMID: 26044091 Free PMC article.
-
di-Cysteine motifs in the C-terminus of plant HMA4 proteins confer nanomolar affinity for zinc and are essential for HMA4 function in vivo.J Exp Bot. 2018 Nov 26;69(22):5547-5560. doi: 10.1093/jxb/ery311. J Exp Bot. 2018. PMID: 30137564 Free PMC article.
-
Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps.Mol Ecol. 2013 Nov;22(22):5594-607. doi: 10.1111/mec.12521. Epub 2013 Oct 28. Mol Ecol. 2013. PMID: 24102711 Free PMC article.
-
Changes in sucrose metabolism in maize varieties with different cadmium sensitivities under cadmium stress.PLoS One. 2020 Dec 11;15(12):e0243835. doi: 10.1371/journal.pone.0243835. eCollection 2020. PLoS One. 2020. PMID: 33306745 Free PMC article.
-
Origin and evolution of metal P-type ATPases in Plantae (Archaeplastida).Front Plant Sci. 2014 Jan 7;4:544. doi: 10.3389/fpls.2013.00544. eCollection 2013. Front Plant Sci. 2014. PMID: 24575101 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources