Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan 25;265(3):1327-32.

pH regulation in spread cells and round cells

Affiliations
  • PMID: 2153127
Free article

pH regulation in spread cells and round cells

M A Schwartz et al. J Biol Chem. .
Free article

Abstract

The aim of this work was to characterize the changes in pH regulation that lead to increased intracellular pH (pHi) in well-spread cells on tissue culture plastic relative to cells on a nonadhesive surface. Bicarbonate was not required for maintenance of a control steady state pHi or of the difference in pHi between round and spread cells. In the absence of bicarbonate, lowering the sodium content of the medium led to decreased pHi and elimination of the difference between round and spread cells. In the presence or absence of bicarbonate, adding ethylisopropyl amiloride lowered pHi and eliminated the difference between round and spread cells. Measurements of recovery from acute acidification in the absence of bicarbonate confirmed that Na+/H+ exchange was enhanced in spread cells. However, recovery from both acidification and alkalinization in the presence of bicarbonate showed that bicarbonate-dependent recovery in both directions, most likely due to sodium-dependent and -independent HCO3-/Cl- exchangers, was also stimulated in spread cells. We conclude that Na+/H+ exchange has a primary role in determining steady state pHi in 3T3 cells in serum and is responsible for the lower pHi in round cells. Bicarbonate-dependent pH regulatory mechanisms are also inhibited in round cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources