Saturation of the human phenome
- PMID: 21532833
- PMCID: PMC3048311
- DOI: 10.2174/138920210793175886
Saturation of the human phenome
Abstract
The phenome is the complete set of phenotypes resulting from genetic variation in populations of an organism. Saturation of a phenome implies the identification and phenotypic description of mutations in all genes in an organism, potentially constrained to those encoding proteins. The human genome is believed to contain 20-25,000 protein coding genes, but only a small fraction of these have documented mutant phenotypes, thus the human phenome is far from complete. In model organisms, genetic saturation entails the identification of multiple mutant alleles of a gene or locus, allowing a consistent description of mutational phenotypes for that gene. Saturation of several model organisms has been attempted, usually by targeting annotated coding genes with insertional transposons (Drosophila melanogaster, Mus musculus) or by sequence directed deletion (Saccharomyces cerevisiae) or using libraries of antisense oligonucleotide probes injected directly into animals (Caenorhabditis elegans, Danio rerio). This paper reviews the general state of the human phenome, and discusses theoretical and practical considerations toward a saturation analysis in humans. Throughout, emphasis is placed on high penetrance genetic variation, of the kind typically asociated with monogenic versus complex traits.
Keywords: Human genome; genetics; phenome; saturation mutagenesis..
Figures



Similar articles
-
modPhEA: model organism Phenotype Enrichment Analysis of eukaryotic gene sets.Bioinformatics. 2017 Nov 1;33(21):3505-3507. doi: 10.1093/bioinformatics/btx426. Bioinformatics. 2017. PMID: 28666356
-
A catalog of CasX genome editing sites in common model organisms.BMC Genomics. 2019 Jun 27;20(1):528. doi: 10.1186/s12864-019-5924-6. BMC Genomics. 2019. PMID: 31248380 Free PMC article.
-
Early developmental expression of Mus musculus zinc finger RNA-binding protein compared to orthologs in Caenorhabditis elegans and Danio rerio and subcellular localization of Mus musculus and Caenorhabditis elegans zinc finger RNA-binding protein in 2-cell Mus musculus embryos.DNA Cell Biol. 2010 Dec;29(12):713-27. doi: 10.1089/dna.2010.1085. Epub 2010 Nov 22. DNA Cell Biol. 2010. PMID: 21091219
-
Ribosomal proteins: mutant phenotypes by the numbers and associated gene expression changes.Open Biol. 2020 Aug;10(8):200114. doi: 10.1098/rsob.200114. Epub 2020 Aug 19. Open Biol. 2020. PMID: 32810425 Free PMC article. Review.
-
RNAi as a tool to study cell biology: building the genome-phenome bridge.Curr Opin Cell Biol. 2005 Feb;17(1):3-8. doi: 10.1016/j.ceb.2004.12.008. Curr Opin Cell Biol. 2005. PMID: 15661512 Review.
Cited by
-
FORGE Canada Consortium: outcomes of a 2-year national rare-disease gene-discovery project.Am J Hum Genet. 2014 Jun 5;94(6):809-17. doi: 10.1016/j.ajhg.2014.05.003. Am J Hum Genet. 2014. PMID: 24906018 Free PMC article.
-
Genetic Modifiers and Rare Mendelian Disease.Genes (Basel). 2020 Feb 25;11(3):239. doi: 10.3390/genes11030239. Genes (Basel). 2020. PMID: 32106447 Free PMC article. Review.
-
FLAGS, frequently mutated genes in public exomes.BMC Med Genomics. 2014 Dec 3;7:64. doi: 10.1186/s12920-014-0064-y. BMC Med Genomics. 2014. PMID: 25466818 Free PMC article.
-
Understanding rare disease pathogenesis: a grand challenge for model organisms.Genetics. 2014 Oct;198(2):443-5. doi: 10.1534/genetics.114.170217. Genetics. 2014. PMID: 25316782 Free PMC article.
-
Homo cerevisiae-Leveraging Yeast for Investigating Protein-Protein Interactions and Their Role in Human Disease.Int J Mol Sci. 2023 May 24;24(11):9179. doi: 10.3390/ijms24119179. Int J Mol Sci. 2023. PMID: 37298131 Free PMC article. Review.
References
LinkOut - more resources
Full Text Sources