Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb 2;1015(2):279-87.
doi: 10.1016/0005-2728(90)90032-y.

Interaction of cytochrome c with cytochrome c oxidase: an understanding of the high- to low-affinity transition

Affiliations

Interaction of cytochrome c with cytochrome c oxidase: an understanding of the high- to low-affinity transition

E A Garber et al. Biochim Biophys Acta. .

Abstract

The steady-state kinetics of high- and low-affinity electron transfer reactions between various cytochromes c and cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) preparations were studied spectrophotometrically and polarographically. The dissociation constants for the binding of the first and second molecules of horse cytochrome c (I = 15 mM) are 5.10(-8) M and 1.10(-5) M, respectively, close to the spectrophotometric Km values and consistent with the controlled binding model for the interaction between cytochrome c and cytochrome oxidase (Speck, S.H., Dye, D. and Margoliash, E. (1984) Proc. Natl. Acad. Sci. USA 81, 346-351) which postulates that the binding of a second molecule of cytochrome c weakens that of the first, resulting in low-affinity kinetics. While the Km of the polarographically assayed high-affinity reaction is comparable to that observed spectrophotometrically, the low-affinity Km is over an order of magnitude smaller and cannot be attributed to the binding of a second molecule of cytochrome c. Increasing the viscosity has no effect on the Vmax of the low-affinity reaction assayed polarographically, but increases the Km. Thus, the transition from high- to low-affinity kinetics is dependent on the frequency of productive collisions, as expected for a hysteresis model ascribing the transition to the trapping of the oxidase in a primed state for turnover. At ionic strengths above 150 mM, the rate of cytochrome c oxidation decreases without any correlation to the calculated net charge of the cytochrome c, indicating rate-limiting rearrangement of the two proteins in proximity to each other.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources