Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun 3;13(11):2830-3.
doi: 10.1021/ol200784y. Epub 2011 May 2.

Enantioselective Pd(II)-catalyzed aerobic oxidative amidation of alkenes and insights into the role of electronic asymmetry in pyridine-oxazoline ligands

Affiliations

Enantioselective Pd(II)-catalyzed aerobic oxidative amidation of alkenes and insights into the role of electronic asymmetry in pyridine-oxazoline ligands

Richard I McDonald et al. Org Lett. .

Abstract

Enantioselective intramolecular oxidative amidation of alkenes has been achieved using a (pyrox)Pd(II)(TFA)(2) catalyst (pyrox = pyridine-oxazoline, TFA = trifluoroacetate) and O(2) as the sole stoichiometric oxidant. The reactions proceed at room temperature in good-to-excellent yields (58-98%) and with high enantioselectivity (ee = 92-98%). Catalyst-controlled stereoselective cyclization reactions are demonstrated for a number of chiral substrates. DFT calculations suggest that the electronic asymmetry of the pyrox ligand synergizes with steric asymmetry to control the stereochemical outcome of the key amidopalladation step.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1
Pd(OAc)2/Pyridine-Catalyzed Intramolecular Aerobic Oxidative Amidation of an Alkene and Ligand Effects. Reaction conditions: 5 mol % PdX2, 7.5 mol % ligand (10 mol % Py), O2 (1 atm), molecular sieves 3 Å, toluene (0.1 M), 50 °C, 12 h.
Scheme 2
Scheme 2
Enantioselective Oxidative Amidation Employing Pyridine Oxazoline Ligands.
Scheme 3
Scheme 3
Ligand Substituent Effects and Reaction Optimization.a a Conditions: 1 (0.075 mmol), 1 atm O2, MS 3 Å (20 mg), toluene (0.75 mL), 12 h. Yield determined by 1H NMR spectroscopy, internal standard = 1,3,5-trimethoxybenzene. Enantiomeric excess deteremined by chiral HPLC (see Supporting Information for details). b 5.5 mol % ligand. c Without MS 3 Å. d 25 °C, 24 h. Isolated yield (0.5 mmol scale).
Scheme 4
Scheme 4
Calculated Ground- and Transition-State Energies Associated with the cis-Amidopalladation of an Alkene at a Pyridine-Oxazoline-Ligated PdII-Center.a a The cationic charge on all structures is omitted for clarity. Final structures were optimized with the following method (Gaussian 03): B3LYP; Stuttgart RSC 1997 ECP/triple-ζ basis for Pd; 6-311+G (d,p) basis on all other atoms; polarizable contiuum solvation model (toluene); see Supporting Information for computational details.

References

    1. For reviews, see: Hegedus LS. In: Comprehensive Organic Synthesis. Semmelhack MF, editor. Vol. 4. Pergamon Press, Inc.; Elmsford: 1991. pp. 551–569. Hosokawa T, Murahashi S-I. In: Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E, de Meijere A, editors. Vol. 2. John Wiley and Sons, Inc.; New York: 2002. pp. 2169–2192. Hosokawa T. In: Handbook of Organopalladium Chemistry for Organic Synthesis. Negishi E, de Meijere A, editors. Vol. 2. John Wiley and Sons, Inc.; New York: 2002. pp. 2211–2225. Zeni G, Larock RC. Chem. Rev. 2004;104:2285–2309. Stahl SS. Angew. Chem. Int. Ed. 2004;43:3400–3420. Beccalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007;107:5318–5365. Minatti A, Muniz K. Chem. Soc. Rev. 2007;36:1142–1152. Kotov V, Scarborough CC, Stahl SS. Inorg. Chem. 2007;46:1910–1923. McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011;111:2981–3019.

    1. See the following leading references: Hosokawa T, Uno T, Inui S, Murahashi S-I. J. Am. Chem. Soc. 1981;103:2318–2323. Uozumi Y, Kato K, Hayashi T. J. Am. Chem. Soc. 1997;119:5063–5064. Uozumi Y, Kato K, Hayashi T. J. Org. Chem. 1998;63:5071–5075. Arai MA, Kuraishi M, Arai T, Sasai H. J. Am. Chem. Soc. 2001;123:2907–2908. Tsujihara T, Shinohara T, Takenaka K, Takizawa S, Onitsuka K, Hatanaka M, Sasai H. J. Org. Chem. 2009;74:9274–9279. Zhang YJ, Wang F, Zhang W. J. Org. Chem. 2007;72:9208–9213.

    1. For ligand-modulated Pd-catalysts capable of using O2 as the oxidant, see: Trend RM, Ramtohul YK, Ferreira EM, Stoltz BM. Angew. Chem. Int. Ed. 2003;42:2892–2895. Trend RM, Ramtohul YK, Stoltz BM. J. Am. Chem. Soc. 2005;127:17778–17788. Yip K-T, Yang M, Law K-L, Zhu N-Y, Yang D. J. Am. Chem. Soc. 2006;128:3130–3131. He W, Yip KT, Zhu NY, Yang D. Org. Lett. 2009;11:5626–5628. Scarborough CC, Bergant A, Sazama GT, Guzei IA, Spencer LC, Stahl SS. Tetrahedron. 2009;65:5084–5092. Jiang F, Wu Z, Zhang W. Tetrahedron Lett. 2010;51:5124–5126.

    1. For important advances in related enantioselective metal-catalyzed C–N bond forming reactions, see the following review and selected primary references: Chemler SR. Org. Biomol. Chem. 2009;7:3009–3019. Overman LE, Remarchuk TP. J. Am. Chem. Soc. 2002;124:12–13. Mai DN, Wolfe JP. J. Am. Chem. Soc. 2010;132:12157–12159. Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2008;130:8590–8591.

    1. Fix SR, Brice JL, Stahl SS. Angew. Chem., Int. Ed. 2002;41:164–166. - PubMed
    2. Liu GS, Stahl SS. J. Am. Chem. Soc. 2007;129:6328–6335. - PubMed
    3. Ye X, Liu G, Popp BV, Stahl SS. J. Org. Chem. 2011;76:1031–1044. - PMC - PubMed

Publication types