Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep;67(5):749-62.
doi: 10.1111/j.1365-313X.2011.04622.x. Epub 2011 Jun 10.

Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens

Affiliations
Free article

Pepper asparagine synthetase 1 (CaAS1) is required for plant nitrogen assimilation and defense responses to microbial pathogens

In Sun Hwang et al. Plant J. 2011 Sep.
Free article

Abstract

Asparagine synthetase is a key enzyme in the production of the nitrogen-rich amino acid asparagine, which is crucial to primary nitrogen metabolism. Despite its importance physiologically, the roles that asparagine synthetase plays during plant defense responses remain unknown. Here, we determined that pepper (Capsicum annuum) asparagine synthetase 1 (CaAS1) is essential for plant defense to microbial pathogens. Infection with Xanthomonas campestris pv. vesicatoria (Xcv) induced early and strong CaAS1 expression in pepper leaves and silencing of this gene resulted in enhanced susceptibility to Xcv infection. Transgenic Arabidopsis (Arabidopsis thaliana) plants that overexpressed CaAS1 exhibited enhanced resistance to Pseudomonas syringae pv. tomato DC3000 and Hyaloperonospora arabidopsidis. Increased CaAS1 expression influenced early defense responses in diseased leaves, including increased electrolyte leakage, reactive oxygen species and nitric oxide bursts. In plants, increased conversion of aspartate to asparagine appears to be associated with enhanced resistance to bacterial and oomycete pathogens. In CaAS1-silenced pepper and/or CaAS1-overexpressing Arabidopsis, CaAS1-dependent changes in asparagine levels correlated with increased susceptibility or defense responses to microbial pathogens, respectively. Linking transcriptional and targeted metabolite studies, our results suggest that CaAS1 is required for asparagine synthesis and disease resistance in plants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources