Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug;18(8):991-9.
doi: 10.1016/j.acra.2011.03.007. Epub 2011 May 4.

A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses

Affiliations

A low tube voltage technique reduces the radiation dose at retrospective ECG-gated cardiac computed tomography for anatomical and functional analyses

Seitaro Oda et al. Acad Radiol. 2011 Aug.

Abstract

Rationale and objectives: To investigate the effect of low-tube-voltage technique on a cardiac computed tomography (CT) for coronary arterial and cardiac functional analyses and radiation dose in slim patients.

Materials and methods: We enrolled 80 patients (52women, 28 men; mean age, 68.7 ± 8.9 years) undergoing retrospective electrocardiogram-gated 64-slice cardiac CT. Forty were subjected to the low (80-kV) and 40 to the standard (120-kV) tube-voltage protocol. Quantitative parameters of the coronary arteries (ie, CT attenuation, image noise, and the contrast-to-noise ratio [CNR]) were calculated, as were the effective radiation dose and the figure of merit (FOM). Each coronary artery segment was visually evaluated using a 5-point scale. Cardiac function calculated by using low-tube-voltage cardiac CT was compared with that on echocardiographs.

Results: CT attenuation and image noise were significantly higher at 80- than 120-kV (P < .01). CNR of the left and right coronary artery was 18.4 ± 3.8 and 18.5 ± 3.3, respectively, at 80 kV; these values were 19.7 ± 2.7 and 19.8 ± 2.8 at 120 kV; the difference was not significant. The estimated effective radiation dose was significantly lower at 80 than 120 kV (6.3 ± 0.6 vs. 13.9 ± 1.1 mSv, P < .01) and FOM was significantly higher at 80 than 120 kV (P < .01). At visual assessment, 99% of the coronary segments were diagnostic quality; the two protocols did not differ significantly. We observed a strong correlation and good agreement between low-tube-voltage cardiac CT and echocardiography for cardiac functional analyses.

Conclusion: Low-tube-voltage cardiac CT significantly reduced the radiation dose by approximately 55% in slim patients while maintaining anatomical image quality and accuracy of cardiac functional analysis.

PubMed Disclaimer

Similar articles

Cited by