Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1990 Jan;258(1 Pt 1):C1-23.
doi: 10.1152/ajpcell.1990.258.1.C1.

Chemical modification as an approach to elucidation of sodium pump structure-function relations

Affiliations
Review

Chemical modification as an approach to elucidation of sodium pump structure-function relations

C H Pedemonte et al. Am J Physiol. 1990 Jan.

Abstract

Chemical modification of specific residues in enzymes, with the characterization of the type of inhibition and properties of the modified activity, is an established approach in structure-function studies of proteins. This strategy has become more productive in recent years with the advances made in obtaining primary sequence information from gene-cloning technologies. This article discusses the application of chemical modification procedures to the study of the Na(+)-K(+)-ATPase protein. A wide array of information has become available about the kinetics, enzyme structure, and various conformational states as a result of the combined use of inhibitors, ligands, modifiers, and proteolytic enzymes. We will review a variety of reagents and approaches that have been employed to arrive at structure-function correlates and discuss critically the limits and ambiguities in the type of information obtained from these methodologies. Chemical modification of the Na(+)-pump protein has already provided a body of data and will, we anticipate, guide the efforts of mutagenesis studies in the future when suitable expression systems become available.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources