Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan 29;1021(2):148-56.
doi: 10.1016/0005-2736(90)90027-l.

Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes

Affiliations

Two active Na+/K+-ATPases of high affinity for ouabain in adult rat brain membranes

I Berrebi-Bertrand et al. Biochim Biophys Acta. .

Abstract

The degree of heterogeneity of active Na+/K(+)-ATPases has been investigated in terms of ouabain sensitivity. A mathematical analysis of the dose-response curves (inhibition of Na+/K(+)-ATPase) at equilibrium is consistent with the putative existence of three inhibitory states for ouabain two of high (very high plus high) and one of low affinity. The computed IC50 values are: 23.0 +/- 0.15 nM, 460 +/- 4.0 nM and 320 +/- 4.6 microM, respectively. The relative abundance of the three inhibitory states was estimated as: 39%, 36% and 20%, respectively. Direct measurements of [3H]ouabain-binding at equilibrium carried out on membrane preparations with ATP, Mg2+ and Na+ also revealed two distinct high affinity-binding sites, the apparent Kd values of which were 17.0 +/- 0.2 nM (very high) and 80 +/- 1 nM (high), respectively. Dissociation processes were studied at different ouabain concentrations according to both reversal of enzyme inhibition and [3H]ouabain release. The reversal of enzyme inhibition occurred at three different rates, depending upon the ouabain doses used (10 nM, 2 and 100 microM). When the high-affinity sites were involved (ouabain doses lower than 2 microM) the dissociation process was biphasic. A similar biphasic pattern was also detected by [3H]ouabain-release. The time-course of [3H]ouabain dissociation (0.1 microM) was also biphasic. These data indicate that the three catalytic subunits of rat brain Na+/K(+)-ATPase alpha 1, alpha 2 and alpha 3 (Hsu, Y.-M. and Guidotti, G. (1989) Biochemistry 28, 569-573) are able to hydrolyse ATP and exhibit different affinities for cardiac glycosides.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources