Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure
- PMID: 21543357
- PMCID: PMC3203501
- DOI: 10.1098/rspb.2011.0489
Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure
Abstract
Understanding how moving organisms generate locomotor forces is fundamental to the analysis of aerodynamic and hydrodynamic flow patterns that are generated during body and appendage oscillation. In the past, this has been accomplished using two-dimensional planar techniques that require reconstruction of three-dimensional flow patterns. We have applied a new, fully three-dimensional, volumetric imaging technique that allows instantaneous capture of wake flow patterns, to a classic problem in functional vertebrate biology: the function of the asymmetrical (heterocercal) tail of swimming sharks to capture the vorticity field within the volume swept by the tail. These data were used to test a previous three-dimensional reconstruction of the shark vortex wake estimated from two-dimensional flow analyses, and show that the volumetric approach reveals a different vortex wake not previously reconstructed from two-dimensional slices. The hydrodynamic wake consists of one set of dual-linked vortex rings produced per half tail beat. In addition, we use a simple passive shark-tail model under robotic control to show that the three-dimensional wake flows of the robotic tail differ from the active tail motion of a live shark, suggesting that active control of kinematics and tail stiffness plays a substantial role in the production of wake vortical patterns.
Figures






Similar articles
-
Function of the heterocercal tail in sharks: quantitative wake dynamics during steady horizontal swimming and vertical maneuvering.J Exp Biol. 2002 Aug;205(Pt 16):2365-74. doi: 10.1242/jeb.205.16.2365. J Exp Biol. 2002. PMID: 12124362
-
Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata.J Exp Biol. 2000 Aug;203(Pt 15):2261-78. doi: 10.1242/jeb.203.15.2261. J Exp Biol. 2000. PMID: 10887066
-
Fish locomotion: recent advances and new directions.Ann Rev Mar Sci. 2015;7:521-45. doi: 10.1146/annurev-marine-010814-015614. Epub 2014 Sep 19. Ann Rev Mar Sci. 2015. PMID: 25251278 Review.
-
Biomechanics: hydrodynamic function of the shark's tail.Nature. 2004 Aug 19;430(7002):850. doi: 10.1038/430850a. Nature. 2004. PMID: 15318211
-
Computational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.Comp Biochem Physiol A Mol Integr Physiol. 2001 Dec;131(1):51-60. doi: 10.1016/s1095-6433(01)00464-0. Comp Biochem Physiol A Mol Integr Physiol. 2001. PMID: 11733166 Review.
Cited by
-
Flexibility of Heterocercal Tails: What Can the Functional Morphology of Shark Tails Tell Us about Ichthyosaur Swimming?Integr Org Biol. 2019 Feb 19;1(1):obz002. doi: 10.1093/iob/obz002. eCollection 2019. Integr Org Biol. 2019. PMID: 33791519 Free PMC article.
-
Hydrodynamic stress maps on the surface of a flexible fin-like foil.PLoS One. 2021 Jan 12;16(1):e0244674. doi: 10.1371/journal.pone.0244674. eCollection 2021. PLoS One. 2021. PMID: 33434237 Free PMC article.
-
Fluid Dynamics of Biomimetic Pectoral Fin Propulsion Using Immersed Boundary Method.Appl Bionics Biomech. 2016;2016:2721968. doi: 10.1155/2016/2721968. Epub 2016 Jul 5. Appl Bionics Biomech. 2016. PMID: 27478363 Free PMC article.
-
In Situ Thrust Measurement of Fish During Locomotion; Test Case: Sharks.Ecol Evol. 2025 Jun 27;15(7):e71660. doi: 10.1002/ece3.71660. eCollection 2025 Jul. Ecol Evol. 2025. PMID: 40584650 Free PMC article.
-
Volumetric quantification of fluid flow reveals fish's use of hydrodynamic stealth to capture evasive prey.J R Soc Interface. 2013 Nov 13;11(90):20130880. doi: 10.1098/rsif.2013.0880. Print 2014 Jan 6. J R Soc Interface. 2013. PMID: 24227312 Free PMC article.
References
-
- Hedenstrom A., Rosen M., Spedding G. 2006. Vortex wakes generated by robins Erithacus rubecula during free flight in a wind tunnel. J. R. Soc. Interface 3, 263–27610.1098/rsif.2005.0091 (doi:10.1098/rsif.2005.0091) - DOI - DOI - PMC - PubMed
-
- Spedding G., Rosen M., Hedenstrom A. 2003. A family of vortex wakes generated by a thrush nightingale in free flight in a wind tunnel over its entire natural range of flight speeds. J. Exp. Biol. 206, 2313–234410.1242/jeb.00423 (doi:10.1242/jeb.00423) - DOI - DOI - PubMed
-
- Tobalske B. W., Dial K. P. 2007. Aerodynamics of wing-assisted incline running in birds. J. Exp. Biol. 210, 1742–175110.1242/jeb.001701 (doi:10.1242/jeb.001701) - DOI - DOI - PubMed
-
- Warrick D. R., Tobalske B. W., Powers D. R. 2005. Aerodynamics of the hovering hummingbird. Nature 435, 1094–109710.1038/nature03647 (doi:10.1038/nature03647) - DOI - DOI - PubMed
-
- Hedenstrom A., Johansson L. C., Wolf M., von Busse R., Winter Y., Spedding G. R. 2007. Bat flight generates complex aerodynamic tracks. Science 316, 894–89710.1126/science.1142281 (doi:10.1126/science.1142281) - DOI - DOI - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Miscellaneous