Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators
- PMID: 2154470
Stoichiometric and reversible phosphorylation of a 46-kDa protein in human platelets in response to cGMP- and cAMP-elevating vasodilators
Abstract
Recently, we reported the purification of a 46-kDa membrane-associated platelet protein which is phosphorylated in intact platelets and platelet membranes by cGMP- and cAMP-dependent protein kinases (Halbrügge, M., and Walter, U. (1989) Eur. J. Biochem. 185, 41-50). Here we demonstrate that both cGMP- and cAMP-dependent protein kinases catalyze the rapid incorporation of up to 1.4 mol of phosphate/mol of this purified vasodilator-stimulated phosphoprotein (VASP). A specific rabbit antiserum was prepared which recognized both the 46-kDa dephospho form and the 50-kDa phospho form of VASP in Western blots. In untreated washed platelets, VASP was found to be present primarily as a 46-kDa dephosphoprotein. Sodium nitroprusside (100 microM) raised the intracellular platelet cGMP concentration from approximately 0.44 to 4.1 microM, without a significant effect on the cAMP level, and converted up to 50% of VASP to the 50-kDa phospho form. Prostaglandin E1 (10 microM) raised the platelet cAMP concentration from approximately 4.4 to 28.4 microM, without a significant effect on the cGMP level, and shifted up to 67% of VASP to the 50-kDa phospho form. Removal of the vasodilators sodium nitroprusside and prostaglandin E1 from the platelet suspension was followed by a return of the cyclic nucleotide concentration to basal levels and subsequent conversion of the 50-kDa phospho form of VASP to the 46-kDa dephospho form. The results support the hypothesis that VASP phosphorylation is an important component of the intracellular mechanism of action of these vasodilators in human platelets.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
