Resistin: functional roles and therapeutic considerations for cardiovascular disease
- PMID: 21545576
- PMCID: PMC3315035
- DOI: 10.1111/j.1476-5381.2011.01369.x
Resistin: functional roles and therapeutic considerations for cardiovascular disease
Abstract
Resistin, originally described as an adipocyte-specific hormone, has been suggested to be an important link between obesity, insulin resistance and diabetes. Although its expression was initially defined in adipocytes, significant levels of resistin expression in humans are mainly found in mononuclear leukocytes, macrophages, spleen and bone marrow cells. Increasing evidence indicates that resistin plays important regulatory roles apart from its role in insulin resistance and diabetes in a variety of biological processes: atherosclerosis and cardiovascular disease (CVD), non-alcoholic fatty liver disease, autoimmune disease, malignancy, asthma, inflammatory bowel disease and chronic kidney disease. As CVD accounts for a significant amount of morbidity and mortality in patients with diabetes and without diabetes, it is important to understand the role that adipokines such as resistin play in the cardiovascular system. Evidence suggests that resistin is involved in pathological processes leading to CVD including inflammation, endothelial dysfunction, thrombosis, angiogenesis and smooth muscle cell dysfunction. The modes of action and signalling pathways whereby resistin interacts with its target cells are beginning to be understood. In this review, the current knowledge about the functions and pathophysiological implications of resistin in CVD development is summarized; clinical translations, therapeutic considerations and future directions in the field of resistin research are discussed.
Linked articles: This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3.
© 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Figures
References
-
- Agarwal A, Das K, Lerner N, Sathe S, Cicek M, Casey G. The AKT/I kappa B kinase pathway promotes angiogenic/metastatic gene expression in colorectal cancer by activating nuclear factor-kappa B and beta-catenin. Oncogene. 2005;24:1021–1031. - PubMed
-
- Annex BH, Denning SM, Channon KM, Sketch MH, Jr, Stack RS, Morrissey JH, et al. Differential expression of tissue factor protein in directional atherectomy specimens from patients with stable and unstable coronary syndromes. Circulation. 1995;91:619–622. - PubMed
-
- Ayer JG, Song C, Steinbeck K, Celermajer DS, Ben Freedman S. Increased tissue factor activity in monocytes from obese young adults. Clin Exp Pharmacol Physiol. 2010;37:1049–1054. - PubMed
-
- Banerjee RR, Lazar MA. Dimerization of resistin and resistin-like molecules is determined by a single cysteine. J Biol Chem. 2001;276:25970–25973. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
