Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jul 1;661(1-3):92-101.
doi: 10.1016/j.ejphar.2011.04.031. Epub 2011 Apr 28.

Hepatoprotective activity of a vinylic telluride against acute exposure to acetaminophen

Affiliations

Hepatoprotective activity of a vinylic telluride against acute exposure to acetaminophen

Daiana Silva Avila et al. Eur J Pharmacol. .

Abstract

Acetaminophen (APAP) hepatotoxicity has been related with several cases of cirrhosis, hepatitis and suicides attempts. Notably, oxidative stress plays a central role in the hepatic damage caused by APAP and antioxidants have been tested as alternative treatment against APAP toxicity. In the present study, we observed the hepatoprotector activity of the diethyl-2-phenyl-2-tellurophenyl vinylphosphonate (DPTVP), an organotellurium compound with low toxicity and high antioxidant potential. When the dose of 200 mg/kg of APAP was used, we observed that all used doses of DPTVP were able to restore the -SH levels that were depleted by APAP. Furthermore, the increase in thiobarbituric acid reactive substances levels and in the seric alanine aminotransferase (ALT) activity and the histopathological alterations caused by APAP were restored to control levels by DPTVP (30, 50 and 100 μmol/kg). On the other hand, when the 300 mg/kg dose of APAP was used, DPTVP restored the non-proteic -SH levels and repaired the normal liver morphology of the intoxicated mice only at 50 μmol/kg. Our in vitro results point out to a scavenging activity of DPTVP against several reactive species, action that is attributed to its chemical structure. Taken together, our results demonstrate that the pharmacological action of DPTVP as a hepatoprotector is probably due to its scavenging activity related to its chemical structure.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources