Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb 14;166(3):1213-9.
doi: 10.1016/0006-291x(90)90995-y.

Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells

Affiliations

Phorbol ester promotes a sustained down-regulation of endothelin receptors and cellular responses to endothelin in human vascular smooth muscle cells

T J Resink et al. Biochem Biophys Res Commun. .

Abstract

The effect of phorbol ester pretreatment of human vascular smooth muscle cells (hVSMC) was studied with respect to regulation of endothelin (ET)-receptor binding and cellular responses to ET. The capacity of hVSMC to bind ET was decreased (by approximately 50% at maximum) after phorbol exposure, and this reductive effect was both rapid (t 1/2 approximately 10 min.) and sustained (for up to 24 hrs. of chronic phorbol exposure). Phorbol pretreatment inhibited both inositol phosphate and diacylclycerol production responses of hVSMC to ET in a manner that was time-dependent and sustained. Phorbol pretreatment also produced a persistent reduction in the ability of ET to release isotopically-labelled arachidonic and/or its metabolites from hVSMC, but importantly ionomycin-stimulated release was similarly negatively affected. Furthermore, ET-induced accumulation of the phospholipase A2/phospholipase B-derived inositol phospholipid metabolite, glycerophosphoinositol, was not different between control and phorbol-treated hVMSC. The mechanism whereby phorbol exerts differential, but notably sustained inhibitory effects on ET-promoted signal transduction pathways are thus complex and illustrative of the selectivity of protein kinase C in regulating cellular responses.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources