Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Jan;2(1):81-90.
doi: 10.1165/ajrcmb/2.1.81.

Complex effects of in vitro hyperoxia on alveolar macrophage arachidonic acid metabolism

Affiliations

Complex effects of in vitro hyperoxia on alveolar macrophage arachidonic acid metabolism

P H Sporn et al. Am J Respir Cell Mol Biol. 1990 Jan.

Abstract

Metabolites of arachidonic acid (AA) released into bronchoalveolar lavage fluid of animals exposed to hyperoxia have previously been implicated as mediators of pulmonary oxygen toxicity. The alveolar macrophage (AM) represents an important potential source of these eicosanoids. We have therefore investigated the effects of in vitro hyperoxia (95% O2/5% CO2) versus normoxia (95% air/5% CO2) on the metabolism of AA in the AM of the rat. Exposure to 95% O2 for up to 72 h did not impair the viability or affect the protein content of cultured AMs. Hyperoxia for 24 to 72 h increased the accumulation of free AA liberated from endogenous stores in cultures of resting AMs. Despite this increase in free AA, no changes in synthesis of thromboxane B2, prostaglandin (PG) E2, PGF2 alpha, leukotriene (LT) B4, or LTC4 were observed in resting AMs exposed to hyperoxia for up to 72 h. This was not due to degradation of eicosanoids in hyperoxia. However, formation of cyclooxygenase metabolites from exogenously supplied AA was reduced in hyperoxia-incubated AMs, suggesting that hyperoxia inhibited the cyclooxygenase enzyme. In AMs stimulated with calcium ionophore A23187, both AA release and synthesis of cyclooxygenase and lipoxygenase eicosanoids were augmented after incubation in hyperoxia for 24 to 72 h. The increase in A23187-stimulated LTB4 synthesis caused by hyperoxia was inhibited by the antioxidants catalase, superoxide dismutase, and the intracellular cysteine loading agent L-2-oxothiazolidine-4-carboxylic acid, suggesting that the augmentation by hyperoxia of A23187-induced AA metabolism was mediated by reactive oxygen metabolites. Thus, hyperoxia has complex effects on AA metabolism in the AM, which include the ability to augment the release of AA and formation of bioactive eicosanoids. These findings support a possible role for eicosanoid synthesis by the AM in the pathogenesis of oxygen toxicity of the lung.

PubMed Disclaimer

Similar articles

Cited by

  • Oxidative Stress and Inflammation in Acute and Chronic Lung Injuries.
    Bezerra FS, Lanzetti M, Nesi RT, Nagato AC, Silva CPE, Kennedy-Feitosa E, Melo AC, Cattani-Cavalieri I, Porto LC, Valenca SS. Bezerra FS, et al. Antioxidants (Basel). 2023 Feb 21;12(3):548. doi: 10.3390/antiox12030548. Antioxidants (Basel). 2023. PMID: 36978796 Free PMC article. Review.

Publication types

LinkOut - more resources