Generalizing common tasks in automated skin lesion diagnosis
- PMID: 21550892
- DOI: 10.1109/TITB.2011.2150758
Generalizing common tasks in automated skin lesion diagnosis
Abstract
We present a general model using supervised learning and MAP estimation that is capable of performing many common tasks in automated skin lesion diagnosis. We apply our model to segment skin lesions, detect occluding hair, and identify the dermoscopic structure pigment network. Quantitative results are presented for segmentation and hair detection and are competitive when compared to other specialized methods. Additionally, we leverage the probabilistic nature of the model to produce receiver operating characteristic curves, show compelling visualizations of pigment networks, and provide confidence intervals on segmentations.
Similar articles
-
Overview of advanced computer vision systems for skin lesions characterization.IEEE Trans Inf Technol Biomed. 2009 Sep;13(5):721-33. doi: 10.1109/TITB.2009.2017529. Epub 2009 Mar 16. IEEE Trans Inf Technol Biomed. 2009. PMID: 19304487 Review.
-
Differentiation of melanoma from benign mimics using the relative-color method.Skin Res Technol. 2010 Aug;16(3):297-304. doi: 10.1111/j.1600-0846.2010.00429.x. Skin Res Technol. 2010. PMID: 20636998
-
Unsupervised segmentation for digital dermoscopic images.Skin Res Technol. 2010 Nov;16(4):401-7. doi: 10.1111/j.1600-0846.2010.00455.x. Epub 2010 Sep 29. Skin Res Technol. 2010. PMID: 20923456
-
Detection of pigment network in dermoscopy images using supervised machine learning and structural analysis.Comput Biol Med. 2014 Jan;44:144-57. doi: 10.1016/j.compbiomed.2013.11.002. Epub 2013 Nov 12. Comput Biol Med. 2014. PMID: 24314859
-
Digital image analysis for diagnosis of cutaneous melanoma. Development of a highly effective computer algorithm based on analysis of 837 melanocytic lesions.Br J Dermatol. 2004 Nov;151(5):1029-38. doi: 10.1111/j.1365-2133.2004.06210.x. Br J Dermatol. 2004. PMID: 15541081 Review.
Cited by
-
The Depth Estimation and Visualization of Dermatological Lesions: Development and Usability Study.JMIR Dermatol. 2024 Dec 18;7:e59839. doi: 10.2196/59839. JMIR Dermatol. 2024. PMID: 39693616 Free PMC article.
-
Melanoma Is Skin Deep: A 3D Reconstruction Technique for Computerized Dermoscopic Skin Lesion Classification.IEEE J Transl Eng Health Med. 2017 Jan 16;5:4300117. doi: 10.1109/JTEHM.2017.2648797. eCollection 2017. IEEE J Transl Eng Health Med. 2017. PMID: 28512610 Free PMC article.
-
Noninvasive Real-Time Automated Skin Lesion Analysis System for Melanoma Early Detection and Prevention.IEEE J Transl Eng Health Med. 2015 Apr 3;3:2900310. doi: 10.1109/JTEHM.2015.2419612. eCollection 2015. IEEE J Transl Eng Health Med. 2015. PMID: 27170906 Free PMC article.
-
Characterisation of black skin stratum corneum by digital macroscopic images analysis.Healthc Technol Lett. 2020 Dec 15;7(6):161-167. doi: 10.1049/htl.2020.0057. eCollection 2020 Dec. Healthc Technol Lett. 2020. PMID: 33425370 Free PMC article.
-
Conditional random fields and supervised learning in automated skin lesion diagnosis.Int J Biomed Imaging. 2011;2011:846312. doi: 10.1155/2011/846312. Epub 2011 Oct 20. Int J Biomed Imaging. 2011. PMID: 22046177 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical