The lysis-lysogeny decision of bacteriophage 933W: a 933W repressor-mediated long-distance loop has no role in regulating 933W P(RM) activity
- PMID: 21551291
- PMCID: PMC3133280
- DOI: 10.1128/JB.00119-11
The lysis-lysogeny decision of bacteriophage 933W: a 933W repressor-mediated long-distance loop has no role in regulating 933W P(RM) activity
Abstract
Our data show that unlike bacteriophage λ, repressor bound at O(L) of bacteriophage 933W has no role in regulation of 933W repressor occupancy of 933W O(R)3 or the transcriptional activity of 933W P(RM). This finding suggests that a cooperative long-range loop between repressor tetramers bound at O(R) and O(L) does not form in bacteriophage 933W. Nonetheless, 933W forms lysogens, and 933W prophage display a threshold response to UV induction similar to related lambdoid phages. Hence, the long-range loop thought to be important for constructing a threshold response in lambdoid bacteriophages is dispensable. The lack of a loop requires bacteriophage 933W to use a novel strategy in regulating its lysis-lysogeny decisions. As part of this strategy, the difference between the repressor concentrations needed to bind O(R)2 and activate 933W P(RM) transcription or bind O(R)3 and repress transcription from P(RM) is <2-fold. Consequently, P(RM) is never fully activated, reaching only ∼25% of the maximum possible level of repressor-dependent activation before repressor-mediated repression occurs. The 933W repressor also apparently does not bind cooperatively to the individual sites in O(R) and O(L). This scenario explains how, in the absence of DNA looping, bacteriophage 933W displays a threshold effect in response to DNA damage and suggests how 933W lysogens behave as "hair triggers" with spontaneous induction occurring to a greater extent in this phage than in other lambdoid phages.
Figures








Similar articles
-
Determinants of bacteriophage 933W repressor DNA binding specificity.PLoS One. 2012;7(4):e34563. doi: 10.1371/journal.pone.0034563. Epub 2012 Apr 3. PLoS One. 2012. PMID: 22509323 Free PMC article.
-
The operator and early promoter region of the Shiga toxin type 2-encoding bacteriophage 933W and control of toxin expression.J Bacteriol. 2004 Nov;186(22):7670-9. doi: 10.1128/JB.186.22.7670-7679.2004. J Bacteriol. 2004. PMID: 15516581 Free PMC article.
-
Purification and characterization of the repressor of the shiga toxin-encoding bacteriophage 933W: DNA binding, gene regulation, and autocleavage.J Bacteriol. 2004 Nov;186(22):7659-69. doi: 10.1128/JB.186.22.7659-7669.2004. J Bacteriol. 2004. PMID: 15516580 Free PMC article.
-
Research on phage λ: a lucky choice.EcoSal Plus. 2024 Dec 12;12(1):eesp00142023. doi: 10.1128/ecosalplus.esp-0014-2023. Epub 2023 Dec 22. EcoSal Plus. 2024. PMID: 39665539 Free PMC article. Review.
-
Developmental pathways for the temperate phage: lysis vs lysogeny,Annu Rev Genet. 1972;6(0):157-90. doi: 10.1146/annurev.ge.06.120172.001105. Annu Rev Genet. 1972. PMID: 4604314 Review. No abstract available.
Cited by
-
Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli.BMC Genomics. 2021 May 19;22(1):366. doi: 10.1186/s12864-021-07685-0. BMC Genomics. 2021. PMID: 34011288 Free PMC article.
-
Shiga toxin: expression, distribution, and its role in the environment.Toxins (Basel). 2011 Jun;3(6):608-25. doi: 10.3390/toxins3060608. Epub 2011 Jun 14. Toxins (Basel). 2011. PMID: 22069728 Free PMC article. Review.
-
Antimicrobial growth promoters approved in food-producing animals in South Africa induce shiga toxin-converting bacteriophages from Escherichia coli O157:H7.Gut Pathog. 2023 Dec 6;15(1):64. doi: 10.1186/s13099-023-00590-9. Gut Pathog. 2023. PMID: 38057920 Free PMC article.
-
Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli.Appl Environ Microbiol. 2015 Dec;81(23):8118-25. doi: 10.1128/AEM.02034-15. Epub 2015 Sep 18. Appl Environ Microbiol. 2015. PMID: 26386055 Free PMC article.
-
Antibacterial efficacy of lytic Pseudomonas bacteriophage in normal and neutropenic mice models.J Microbiol. 2011 Dec;49(6):994-9. doi: 10.1007/s12275-011-1512-4. Epub 2011 Dec 28. J Microbiol. 2011. PMID: 22203564
References
-
- Arber W., et al. 1983. Lambda II, p. 433–466 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY
-
- Baek K., Svenningsen S., Eisen H., Sneppen K., Brown S. 2003. Single-cell analysis of lambda immunity regulation. J. Mol. Biol. 334:363–372 - PubMed
-
- Beckett D., Burz D. S., Ackers G. K., Sauer R. T. 1993. Isolation of lambda repressor mutants with defects in cooperative operator binding. Biochemistry 32:9073–9079 - PubMed
-
- Beckett D., Koblan K. S., Ackers G. K. 1991. Quantitative study of protein association at picomolar concentrations: the lambda phage cI repressor. Anal. Biochem. 196:69–75 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials