Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Apr 28;6(4):e19010.
doi: 10.1371/journal.pone.0019010.

How much remains undetected? Probability of molecular detection of human Plasmodia in the field

Affiliations

How much remains undetected? Probability of molecular detection of human Plasmodia in the field

Cristian Koepfli et al. PLoS One. .

Abstract

Background: In malaria endemic areas, most people are simultaneously infected with different parasite clones. Detection of individual clones is hampered when their densities fluctuate around the detection limit and, in case of P. falciparum, by sequestration during part of their life cycle. This has important implications for measures of levels of infection or for the outcome of clinical trials. This study aimed at measuring the detectability of individual P. falciparum and P. vivax parasite clones in consecutive samples of the same patient and at investigating the impact of sampling strategies on basic epidemiological measures such as multiplicity of infection (MOI).

Methods: Samples were obtained in a repeated cross-sectional field survey in 1 to 4.5 years old children from Papua New Guinea, who were followed up in 2-monthly intervals over 16 months. At each follow-up visit, two consecutive blood samples were collected from each child at intervals of 24 hours. Samples were genotyped for the polymorphic markers msp2 for P. falciparum and msp1F3 and MS16 for P. vivax. Observed prevalence and mean MOI estimated from single samples per host were compared to combined data from sampling twice within 24 h.

Findings and conclusion: Estimated detectability was high in our data set (0.79 [95% CI 0.76-0.82] for P. falciparum and, depending on the marker, 0.61 [0.58-0.63] or 0.73 [0.71-0.75] for P. vivax). When genotyping data from sequential samples, collected 24 hours apart, were combined, the increase in measured prevalence was moderate, 6 to 9% of all infections were missed on a single day. The effect on observed MOI was more pronounced, 18 to 31% of all individual clones were not detected in a single bleed. Repeated sampling revealed little difference between detectability of P. falciparum and P. vivax.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Dynamics of parasite clones over 24 hours.
Schematic overview of possible outcomes of 24 h bleeds. A sample is positive as soon as a parasite is detected on either day. Different colors of PCR results indicate different clones detected. The combined multiplicity of infection includes all clones detected in two corresponding bleeds.
Figure 2
Figure 2. Examples of results obtained on two consecutive days by PCR-capillary electrophoresis.
Capillary electrophoresis chromatograms obtained with the P. vivax marker msp1F3 from two patients on two consecutive days. X-axis: size of PCR product in base pairs. Y-axis: relative fluorescent units. In patient 1 one clone was detected on day 1, and two additional clones were detected on day 2, combined MOI = 3. Patient 2 was negative on day 1, but one clone was found on day 2, combined MOI = 1.
Figure 3
Figure 3. Detectablity of Plasmodium infections and parasite clones in different age groups.
Values for microscopy and “P. vivax PCR any marker” refer to detection of parasites without distinction of clones. Values for the molecular markers P. falciparum msp2, P. vivax msp1F3 and P. vivax MS16 refer to the detection of parasite clones. Larger 95% CI of P. falciparum detectability are mainly caused by smaller sample size.
Figure 4
Figure 4. Detectablity of parasite clones vs. multiplicity of infection.
Figure 5
Figure 5. Detectablity of parasite clones in patients harbouring different parasite densities.

References

    1. Guerra CA, Hay SI, Lucioparedes LS, Gikandi PW, Tatem AJ, et al. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J. 2007;6:17. - PMC - PubMed
    1. Hay SI, Guerra CA, Gething PW, Patil AP, Tatem AJ, et al. A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 2009;6:e1000048. - PMC - PubMed
    1. Guerra CA, Howes RE, Patil AP, Gething PW, Van Boeckel TP, et al. The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis. 2010;4:e774. - PMC - PubMed
    1. Patil AP, Okiro EA, Gething PW, Guerra CA, Sharma SK, et al. Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation. Malar J. 2009;8:186. - PMC - PubMed
    1. Thuilliez J. Fever, malaria and primary repetition rates amongst school children in Mali: combining demographic and health surveys (DHS) with spatial malariological measures. Soc Sci Med. 2010;71:314–323. - PubMed

Publication types