Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Feb;258(2 Pt 2):F356-63.
doi: 10.1152/ajprenal.1990.258.2.F356.

Effect of pH on Na(+)-dependent phosphate transport in renal outer cortical and outer medullary BBMV

Affiliations

Effect of pH on Na(+)-dependent phosphate transport in renal outer cortical and outer medullary BBMV

G A Quamme. Am J Physiol. 1990 Feb.

Abstract

The influence of pH on sodium-phosphate cotransport was determined in brush-border membrane vesicles (BBMV) isolated from outer cortical and outer medullary tissue of porcine kidneys. Two transport systems are apparent in outer cortical brush-border vesicles, and one process is apparent in outer medullary vesicles at all pH values. The apparent maximum uptake rate (Vmax) of the low-affinity system in outer cortex vesicles decreased from 8.3 +/- 1.7 to 3.2 +/- 0.05 nmol.mg protein-1.min-1 with pH change of 8.0 to 6.0, and the high-affinity process changed from 1.3 +/- 0.2 to 0.1 +/- 0.01 nmol.mg protein-1.min-1. The respective affinity values (Km) also decreased 5.5 +/- 0.9 to 0.6 +/- 0.01 mM and 0.08 +/- 0.005 to 0.01 +/- 0.005 mM, respectively, with acidification. In outer medullary vesicles a decrease in pH diminished the apparent Km, 0.28 +/- 0.03 to 0.02 +/- 0.003 mM, and mean Vmax from 3.0 +/- 0.07 to 0.5 +/- 0.1 nmol.mg protein-1.min-1. The mean KNaD values were 22.1 +/- 4.2 mM in outer cortical vesicles (low-affinity system) and 58.7 +/- 7.2 mM in outer medullary vesicles (high-affinity system) and were not altered by pH, suggesting that H+ does not affect the sodium interactive site. The data suggest that the vesicles prepared from outer cortical and outer medullary tissue possess distinctive sodium-phosphate transporters that are sensitive to external H+ concentrations.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources